Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.
уравнение дробного порядка, прямая задача, обратная задача, метод Фурье, функция Миттаг–Леффлера, преобразование Лапласа, существование, единственностьThis work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.
-
В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.
The Adler-van Moerbeke integrable case. Visualization of bifurcations of Liouville tori, pp. 532-539In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree - the Adler-van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie-Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank 0 and 1 of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.
-
В статье вводится новое понятие выпуклости функции: $(s,m_{1},m_{2})$-выпуклые функции. Этот класс функций объединяет несколько типов выпуклости, встречающихся в литературе. Установлены некоторые свойства $(s,m_{1},m_{2})$-выпуклости и приведены простые примеры функций, принадлежащих этому классу. На основе доказанного тождества получены новые интегральные неравенства типа Адамара в терминах оператора дробного интегрирования. Показано, что эти результаты дают, в частности, обобщение ряда имеющихся в литературе результатов.
выпуклая функция, неравенство типа Адамара, дробный интеграл Римана–Лиувилля, неравенство Гёльдера, неравенство о среднихThe article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.
-
В данной работе рассматривается уравнение Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником. Показано, что уравнение Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником может быть проинтегрировано методом обратной спектральной задачи. Определена эволюция спектральных данных оператора Штурма–Лиувилля с периодическим потенциалом, связанного с решением уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником. Полученные результаты позволяют применить метод обратной задачи для решения уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным источником в классе периодических функций.
In this paper, we consider the negative order Korteweg–de Vries equation with a self-consistent integral source. It is shown that the negative-order Korteweg–de Vries equation with a self-consistent integral source can be integrated by the method of the inverse spectral problem. The evolution of the spectral data of the Sturm–Liouville operator with a periodic potential associated with the solution of the negative order Korteweg–de Vries equation with a self-consistent integral source is determined. The obtained results make it possible to apply the inverse problem method to solve the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions.
-
В статье рассматривается оператор Штурма-Лиувилля с вещественным квадратично интегрируемым потенциалом. Граничные условия являются неразделенными. В одно из этих граничных условий входит квадратичная функция спектрального параметра. Изучены некоторые спектральные свойства оператора. Доказаны вещественность и отличность от нуля собственных значений и отсутствие присоединенных функций к собственным функциям, выведена асимптотическая формула для спектра оператора и получено представление характеристической функции в виде бесконечного произведения. Результаты статьи играют важную роль при решении обратных задач спектрального анализа для дифференциальных операторов.
оператор Штурма-Лиувилля, неразделенные граничные условия, собственные значения, бесконечное произведениеThe article considers the Sturm-Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.
-
Теоремы типа Лиувилля для решений полулинейных уравнений на некомпактных римановых многообразиях, с. 629-639В данной работе доказано, что функция Лиувилля, ассоциированная с полулинейным уравнением $ \Delta u -g (x, u) = 0 $, тождественна нулю тогда и только тогда, когда существует только тривиальное ограниченное решение полулинейного уравнения на некомпактных римановых многообразиях. Этот результат обобщает соответствующий результат С.А. Королькова в случае стационарного уравнения Шрёдингера $ \Delta u-q (x) u = 0 $. Так же введено понятие емкости компакта, ассоцированого со стационарным уравнением Шрёдингера, и доказано, что если емкость любого компакта равна нулю, то функция Лиувилля есть тождественный ноль.
теорема типа Лиувилля, полулинейные эллиптические уравнения, римановы многообразия, массивные множества, функция Лиувилля
Liouville type theorems for solutions of semilinear equations on non-compact Riemannian manifolds, pp. 629-639It is proved that the Liouville function associated with the semilinear equation $\Delta u -g(x,u)=0$ is identical to zero if and only if there is only a trivial bounded solution of the semilinear equation on non-compact Riemannian manifolds. This result generalizes the corresponding result of S.A. Korolkov for the case of the stationary Schrödinger equation $ \Delta u-q (x) u = 0$. The concept of the capacity of a compact set associated with the stationary Schrödinger equation is also introduced and it is proved that if the capacity of any compact set is equal to zero, then the Liouville function is identically zero.
-
Интегрирование уравнения Кортевега-де Фриза отрицательного порядка методом обратной задачи рассеяния, с. 523-533В данной работе показано, что уравнение Кортевега-де Фриза отрицательного порядка может быть решено методом обратной задачи рассеяния. Определена эволюция спектральных данных оператора Штурма-Лиувилля с потенциалом, связанным с решением уравнения Кортевега-де Фриза отрицательного порядка. Полученные результаты позволяют применить метод обратной задачи рассеяния для решения рассматриваемой задачи.
оператор Штурма-Лиувилля, уравнение Кортевега-де Фриза отрицательного порядка, данные рассеяния, обратная задача рассеяния
Integration of the negative order Korteweg-de Vries equation by the inverse scattering method, pp. 523-533In this paper, we consider the integration of the negative order Korteweg-de Vries equation by the inverse scattering method. The evolution of the spectral data of the Sturm-Liouville operator with a potential associated with the solution of the negative order Korteweg-de Vries equation is determined. The obtained results make it possible to apply the method of inverse scattering problem to solve the negative order Korteweg-de Vries equation in the class of rapidly decreasing functions.
-
В данной работе решается задача Коши для уравнения Кортевега-де Фриза с нагруженными членами и самосогласованным источником в классе быстроубывающих функций. Для решения этой задачи используется метод обратной задачи рассеяния. Получена эволюция данных рассеяния самосопряженного оператора Штурма-Лиувилля, коэффициент которого является решением уравнения Кортевега-де Фриза с нагруженными членами и самосогласованным источником. Приведены примеры, иллюстрирующие применение полученных результатов.
нагруженное уравнение Кортевега-де Фриза, решения Йоста, обратная задача рассеяния, интегральное уравнение Гельфанда-Левитана-Марченко, эволюция данных рассеянияIn this paper, we solve the Cauchy problem for the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions. To solve this problem, the method of the inverse scattering problem is used. The evolution of the scattering data of the self-adjoint Sturm-Liouville operator, whose coefficient is a solution of the Korteweg-de Vries equation with loaded terms and a self-consistent source, is obtained. Examples are given to illustrate the application of the obtained results.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.