Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной работе представлена и проанализирована симметричная стабилизированная коллокационная формулировка метода конечных объемов для стационарной обобщенной задачи Стокса. Этот метод основан на аппроксимации наинизшего порядка (кусочно-постоянные функции) для обеих неизвестных величин: скорости и давления. Стабилизация достигается за счет добавления в формулировку дискретного слагаемого, связанного с давлением. Установлены свойства устойчивости и сходимости метода. В заключение представлены два численных примера, подтверждающие устойчивость и точность предложенного метода.
In this paper, a symmetric stabilized collocated formulation of finite volume method is introduced and analyzed for the stationary generalized Stokes problem. This method is based on the lowest-order approximation using piecewise constant functions for both velocity and pressure unknowns. Stabilization is achieved by adding a discrete pressure term to the approximate formulation. The stability and convergence properties are established. Two numerical examples are presented to confirm the stability and accuracy of the proposed method.
-
Рассматривается сопряженная задача теплообмена, которая возникает при расчете параметров инфракрасного нагревателя. Приводится постановка задачи для трехмерного турбулентного течения в трубе излучателя с учетом наличия лучистого теплообмена с отражателем и внешнего теплообмена с окружающей средой. Проведен расчет для поставленной задачи.
It is considered associate problem of heat-exchange, which we must solve at determination of parameters of а radiant heater. It is resulted a statement of a problem for three-dimensional turbulent current in pipe of emitter with provision for presence radiant heat-exchange with reflector and external heat-exchange with surrounding ambience. It is organized a calculation of delivered problems.
-
Приводится постановка нелинейной краевой задачи о распространении волн по свободной поверхности слабовязкой жидкости. Решение задачи находится методом переменной во времени частоты, являющимся обобщением метода Стокса для диссипативных волновых процессов. Найдено асимптотическое решение с точностью третьего приближения по волновому параметру. Показано, что частота и декремент затухания нелинейной волны с течением времени стремятся к значениям, соответствующим линейной задаче. Определены нелинейные траектории жидких частиц, а также выражение переносной скорости Стокса в слабовязкой жидкости.
The statements of nonlinear boundary-value problem for wave propagation over the free surface of lowviscosity fluid have been presented. Solution is found by the method of time-varying frequency, which is the Stokes’ method generalized for the dissipative wave processes. The asymptotic solution up to the third-order approximation upon the wave parameter has been found. It is shown that the frequency and damping rate of the nonlinear wave tend in time to the values corresponding to a linear problem. Nonlinear trajectories of fluid particles and the expression for transfer velocity in a low-viscosity Stokes fluid have been defined.
-
Рассматривается задача Коши для уравнений Навье–Стокса над полосой ${\mathbb R}^3 \times [0,T]$ с временем $T>0$ в пространственно-периодической постановке. Доказывается, что задача индуцирует открытые инъективные отображения ${\mathcal A}_s\colon B^{s}_1 \to B^{s-1}_2$, где $B^{s}_1$, $B^{s-1}_2$ суть элементы шкал специально построенных функциональных пространств Бохнера–Соболева, параметризованных индексом гладкости $s \in \mathbb N$. Наконец, мы доказываем, что отображение ${\mathcal A}_s$ сюръективно тогда и только тогда, когда прообраз ${\mathcal A}_s ^{-1}(K)$ любого предкомпактного множества $K$ из образа отображения ${\mathcal A}_s$ ограничен в пространстве Бохнера $L^{\mathfrak s} ([0,T], L ^{{\mathfrak r}} ({\mathbb T}^3))$ с показателями Ладыженской–Проди–Серрина ${\mathfrak s}$, ${\mathfrak r}$.
We consider the initial value problem for the Navier–Stokes equations over ${\mathbb R}^3 \times [0,T]$ with time $T>0$ in the spatially periodic setting. We prove that it induces open injective mappings ${\mathcal A}_s\colon B^{s}_1 \to B^{s-1}_2$ where $B^{s}_1$, $B^{s-1}_2$ are elements from scales of specially constructed function spaces of Bochner–Sobolev type parametrized with the smoothness index $s \in \mathbb N$. Finally, we prove that a map ${\mathcal A}_s$ is surjective if and only if the inverse image ${\mathcal A}_s ^{-1}(K)$ of any precompact set $K$ from the range of the map ${\mathcal A}_s$ is bounded in the Bochner space $L^{\mathfrak s} ([0,T], L^{{\mathfrak r}} ({\mathbb T}^3))$ with the Ladyzhenskaya–Prodi–Serrin numbers ${\mathfrak s}$, ${\mathfrak r}$.
-
Рассмотрена адаптация уравнений Навье-Стокса к универсальной многосеточной технологии с целью создания высокоэффективного алгоритма для решения задач вычислительной гидродинамики.
We study an adaptation of the Navier-Stokes equations to the robust multigrid technique in order to develop efficient solver for CFD problems.
-
Рассмотрена нелинейная задача о распространении волн по свободной поверхности слоя вязкой несжимаемой жидкости бесконечной глубины в плоском случае. С помощью метода малого параметра данная нелинейная задача раскладывается на задачи в первых двух приближениях, которые последовательно разрешаются. Получены нелинейные выражения для компонент вектора скорости, динамического давления и формы свободной поверхности. Изучается движение частиц вязкой жидкости, вызванное распространением волны по свободной поверхности. Установлено, что вязкость жидкости оказывает существенное влияние на форму траекторий жидких частиц, которое проявляется как в уменьшении амплитуды колебаний с течением времени, так и в отличии траекторий вблизи свободной поверхности и при заглублении. Исследован нелинейный эффект Стокса, который заключается в наличии приповерхностного течения.
The asymptotic solution of a nonlinear problem of wave propagation on a surface of viscous fluid, pp. 397-404The paper deals with the nonlinear problem of wave propagation on a free surface of an infinitely deep layer of viscous incompressible fluid on a plane. Using the method of a small parameter, this nonlinear problem is decomposed into problems at the first two approximations which are solved one by one. Nonlinear expressions for the components of a velocity vector, the dynamic pressure and the shape of a free surface are obtained. The motion of viscous fluid particles caused by wave propagation on a free surface is investigated. It is found that the viscosity of a liquid has significant effect on the shape of the trajectories of liquid particles, which is manifested as a decrease in the amplitude of oscillations over time, and in the trajectories dissimilarity near the free surface, and at the deepening. The nonlinear Stokes effect that indicates the presence of near-surface currents is analyzed.
-
Решение нестационарных задач аэродинамики на основе вычислительных алгоритмов высокого порядка аппроксимации, с. 140-150Приводится вычислительный алгоритм высокого порядка точности для решения задач аэродинамики и газовой динамики. Метод прямого численного моделирования основан на применении современных схем WENO при аппроксимации по пространству конвективных слагаемых и первых производных системы полных уравнений Навье-Стокса. Вторые производные и диффузионные члены уравнений разрешаются с помощью центрально-разностной схемы высокого порядка точности. Результаты моделирования с использованием метода демонстрируются на примере решения двух задач. Показывается, что вычислительные алгоритмы адекватно воспроизводят физические эффекты, свойственные как дозвуковым течениям (вихревые дорожки), так и сверхзвуковым потокам (разрывы параметров, ударные волны, скачки уплотнения).
уравнения Навье-Стокса, прямое численное моделирование, схема высокого порядка, сверхзвуковое обтекание, число Маха
Solution of unsteady aerodynamics problems on the basis of the numerical algorithms of high-order approximation, pp. 140-150A computational high-order algorithm for solving aerodynamics problems is presented. A direct numerical simulation method is based on the application of modern WENO-schemes at the approximation according to the space of convective summands and first derivatives of the system of full Navier-Stokes equations. Second derivatives and diffusive terms of the equations are resolved with a high-order central-difference scheme. The results of simulation with the use of the above method are demonstrated in considering the solution of two problems. It is shown that computational algorithms efficiently reproduce physical behavior of subsonic flows (vortex trail) and supersonic flows (discontinuity of parameters, air-blasts, compression shocks).
-
Рассматриваются два подхода к решению задачи математического моделирования обтекания метаемых тел: численное решение уравнений движения сплошной среды Навье-Стокса, осредненных по Рейнольдсу (RANS - Reynolds-averaged Navier–Stokes), с использованием модели турбулентности и прямое численное моделирование (DNS - Direct Numerical Simulation). Тестирование рассматриваемых подходов проводится при решении задачи обтекания тел вращения с простой геометрией: сферы и цилиндра с конической головной частью, для которых известны значения коэффициентов сопротивления при различных числах Маха. Проведено качественное и количественное сравнение результатов обтекания рассматриваемых тел сверхзвуковым потоком, полученным по методикам RANS и DNS. Апробация методики численного моделирования проводится для метаемого тела (снаряда) характерной формы. Представлены результаты численного моделирования обтекания снаряда для широкого диапазона параметров: чисел Маха и углов нутации. Выполнено сравнение расчетных значений коэффициентов сопротивления с эмпирическими эталонными зависимостями по законам 1943 и 1958 годов.
задача внешнего обтекания, уравнения Навье-Стокса, осреднение по Рейнольдсу, прямое численное моделирование, коэффициент аэродинамического сопротивления, вычислительная гидромеханикаTwo approaches to the problem of numerical simulation of streamlined bodies airflow are considered. These approaches are: numerical calculation of the Reynolds-averaged Navier-Stokes equations (RANS) using the turbulence model and direct numerical simulation (DNS). Testing of the considered approaches were conducted by solving the problem of flow past bodies of revolution with simple geometries: sphere and cone cylinder, for which values of drag coefficient at different Mach numbers are known. Qualitative and quantitative comparison of the results for the supersonic flow (modelled by RANS and DNS methods) around the bodies under consideration are carried out. The numerical simulation method is tested by considering the missile body (projectile) of characteristic shape. The numerical simulation results for the flow around the projectile are presented for a wide range of parameters: Mach numbers and angles of nutation. The calculated values of the drag coefficients are compared to the empirical reference dependencies according to the laws of 1943 and 1958.
-
В статье рассматривается модельная задача несжимаемого течения жидкости и переноса тепла в коротком плоском канале с обратным уступом. Цель работы состоит в исследовании влияния граничного условия для потока тепла (температуры) на выходе из канала на характеристики теплопереноса внутри канала. Система уравнений Навье-Стокса и баланса тепла решаются численно с использованием равномерной сетки разрешением $6001\times301$ узлов. Для разностной аппроксимации пространственных производных используется метод контрольного объема второго порядка. Достоверность получаемых решений подтверждена для широкого диапазона числа Рейнольдса $(100 \leqslant \text{Re} \leqslant 1000)$ и числа Прандтля $\text{Pr} = 0.71$ путем сравнения с экспериментальными и теоретическими результатами, найденными в литературе. Анализируются картины течения, поля изотерм перегрева потока и поведение локального числа Нуссельта вдоль нагретой нижней стенки канала в зависимости от выбора выходного граничного условия для потока тепла (температуры). Показано, что этот выбор может оказать существенное влияние на характер прогрева течения внутри всего канала. По результатам исследования выбор сделан в пользу нелинейного граничного условия.
Numerical solution of the heat transfer problem in a short channel with backward-facing step, pp. 431-449A test problem of the laminar steady incompressible flow and heat transfer over backward-facing step in a 2D short channel is presented. The focus of the study is on the changes in heat transfer characteristics of the flow field inside the channel due to different boundary conditions for heat flux at the outflow border of the domain. The Navier-Stokes equations in a velocity-pressure formulation and energy equation are numerically solved using a uniform grid of $6001\times301$ points. The control-volume technique for the second-order difference approximation for spatial derivatives is used. The solutions were validated for a wide range of Reynolds numbers $(100 \leqslant \text{Re} \leqslant 1000)$ and Prandtl number $\text{Pr} = 0.71$, comparing them to experimental and numerical results found in the literature. The isotherm patterns and behaviors of Nusselt number along the heated bottom wall of the channel are examined. The study results showed that a condition for the heat flow (temperature) at the outlet border can influence the heat transfer in the whole domain. The nonlinear boundary condition for temperature at the outflow border is claimed as the best.
-
В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.
The paper deals with the results of solving the problem of steady-state flow of a viscous incompressible fluid in a plane channel with a backward-facing step and a heated bottom wall for the Reynolds number in the range $100\leqslant \text{Re}\leqslant1000$ and the expansion ratio of a plane channel in the range $1.11 \leqslant ER \leqslant 10$. The study was carried out by numerical integration of the 2-D Navier-Stokes equations in velocity-pressure formulation on uniform grids with a step which equals to 1/300. Correction of the results is confirmed by comparing them with the literature data. Detailed flow patterns and fields of stream overheating depending on two basic parameters of the problem $\text{Re}$ and $ER$ are demonstrated. It is shown that with the increase of parameters $\text{Re}$ and $ER$ the structure of flow becomes much more complicated, that is, there is an increase of the number of vortices and their sizes up to the formation of a vortex behind the backward-facing step with two centers of rotation. It is also stated that the typical height of the heating zone of the flow depends weakly on $\text{Re}$ and $ER$ and eventually, near the exit of the channel, equals approximately half of the channel height. For all centers of vortices their main characteristics are defined: location, extremums of stream function, vorticity. Complex nonmonotonic behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number) along the channel are analyzed. It is shown that these coefficients strongly depend both on Reynolds number and on expansion ratio, reaching the maximum values at the maximum values of $\text{Re}$ and $ER$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.