Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'viscosity':
Найдено статей: 13
  1. В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.

    В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.

    С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.

    Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.

    We consider the Cauchy problem for the system of quasi-linear first order equations of a special form. The system is symmetric, the state variable is n-dimensional. The considered Cauchy problem is deduced from the Cauchy problem for the Hamilton-Jacobi-Bellman equation by means of the operation of differentiation of this equation and the boundary condition with respect to the variable xi. It is assumed that the Hamiltonian and the initial condition are continuously differentiable functions. The Hamiltonian is convex with respect to the adjoint variable.

    The paper presents a new approach to the definition of the generalized solution of the system of quasi-linear first order equations. The generalized solution belongs to the class of multivalued functions with convex compact values. We prove the existence, uniqueness and stability theorems. The semigroup property for the proposed generalized solution is obtained. It is shown that the potential for generalized solutions of quasi-linear equations coincides with the unique minimax/viscosity solution of the corresponding Cauchy problem for the Hamilton-Jacobi-Bellman equation, and at the points of differentiability of the minimax solution its gradient coincides with the generalized solution of the Cauchy problem. Properties of the generalized solutions of the Cauchy problem for a system of quasi-linear equations are obtained on the basis of this connection. In particular, it is shown that the introduced generalized solution coincides with the superdifferential of the minimax solution of the Cauchy problem and is singlevalued almost everywhere.

    The structure of the set of points at which the minimax solution is not differentiable is described by using the characteristics of the Hamilton-Jacobi-Bellman equation.

    It is shown that the property of the generalized solution of the quasilinear equation with a scalar state variable proposed by O.A. Oleinik, can be extended to the case of the system of quasi-linear equations under consideration.

  2. Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.

    We study the long-time evolution of axisymmetric free-surface two-layered creeping flow subject to the initial topography of its boundaries and bottom velocities. Each layer has uniform density and viscosity. The upper layer is assumed to have a smaller density than the lower layer. Based on lubrication approximation (the Reynolds equations) the nonlinear system of diffusion-type equations with respect to the surface and interface between the layers is obtained to describe this flow. Taking the dimensionless density contrast between the layers as a small parameter, we apply the method of asymptotic expansions to extract leading-term approximation for the slowly varying large-time evolution of the governing equations. An asymptotic equation relating both surface and interface displacement to the bottom velocities is derived. Based on this equation, we develop the algorithm to calculate velocity fields within layers for large time. Streamlines are used to visualize the flow. Numerical results reveal stability of the streamlines in the upper layer under variation of the bottom velocity. As geophysical applications, the developed algorithm is used to evaluate the velocity field in the crust (the upper layer) beneath the large-scale lunar multi-ring basins influenced by deep movements in the underlying mantle (the lower layer). To validate the results of modeling, we compare the calculated velocity fields with basin ridge systems obtained by experimental observations. The model comparison has shown proximity of radii of basin rings and critical points of the surface velocity.

  3. Потапов И.И., Потапов Д.И., Королёва К.С.
    О движении речного потока в сечении изогнутого русла, с. 577-593

    На закруглениях речного русла формируются вторичные поперечные течения. В зависимости от геометрии русла вторичных течений в створе может быть несколько, и они могут иметь различный масштаб. Даже малое вторичное поперечное течение влияет на параметры гидродинамического потока и это влияние необходимо учитывать при моделировании русловых процессов и исследовании береговых деформаций русла. Трехмерное моделирование таких разномасштабных процессов требует больших вычислительных затрат и на текущий момент возможно только для небольших модельных каналов. Поэтому для исследования береговых процессов в данной работе предложена модель пониженной размерности. Выполненная редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости–вихрь–функция тока. В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данного поля скорости должно быть определено из решения вспомогательных задач или получено из данных натурных или экспериментальных измерений. Для численного решения сформулированной задачи используется метод конечных элементов в формулировке Петрова–Галеркина. В работе получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений с известными экспериментальными данными. Погрешности численных результатов авторы связывают с необходимостью более точного определения радиальной компоненты поля скорости в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и более точного определения граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I., Koroleva K.S.
    On the river flow motion in the bend channel cross-section, pp. 577-593

    At the river bed curves, secondary flow normal to the main flow direction are formed. Depending on the channel geometry, there may be several secondary flows in the cross-section, and they may have different scales. Even a small secondary cross-section flow affects the parameters of the hydrodynamic flow and this influence must be taken into account when modeling riverbed processes and researching coast deformations of the channel. Three-dimensional modeling of such multi-scale processes requires large computational costs and is currently possible only for small model channels. Therefore, a reduced-dimensional model is proposed in this paper to study coastal processes. The performed reduction of the problem from a three-dimensional model of river flow motion to a two-dimensional one in the plane of the channel cross-section assumes that the hydrodynamic flow is quasi-stationary and the hypotheses on the asymptotic behavior of the flow along the flow coordinate are fulfilled for it. Taking into account these limitations, a mathematical model of the problem of a stationary turbulent calm river flow in a channel cross-section is formulated in this work. The problem is formulated in a mixed velocity–vortex–stream function formulation. Specifying of the boundary conditions on the flow free surface for the velocity field determined in the normal and tangential directions to the cross-section axis is required as additional conditions for the problem reduction. It is assumed that the values of this velocity field should be determined from the solution of auxiliary problems or obtained from data of natural or experimental measurements.

    The finite element method in the Petrov–Galerkin formulation is used for the numerical solution of the formulated problem. A discrete analog of the problem is obtained and an algorithm for its solution is proposed. The performed numerical studies showed generally good agreement between the obtained solutions and the known experimental data. The authors associate the errors in the numerical results with the need for a more accurate determination of the radial component of the velocity field in the cross-section by selecting and calibrating a more suitable model for turbulent viscosity calculating and a more accurate determination of the boundary conditions on the cross-section free boundary.

  4. Приводится постановка нелинейной краевой задачи о распространении волн по свободной поверхности слабовязкой жидкости. Решение задачи находится методом переменной во времени частоты, являющимся обобщением метода Стокса для диссипативных волновых процессов. Найдено асимптотическое решение с точностью третьего приближения по волновому параметру. Показано, что частота и декремент затухания нелинейной волны с течением времени стремятся к значениям, соответствующим линейной задаче. Определены нелинейные траектории жидких частиц, а также выражение переносной скорости Стокса в слабовязкой жидкости.

    Barinov V.A., Basinsky K.J.
    Nonlinear Stokes waves on the surface of low-viscosity fluid, pp. 112-122

    The statements of nonlinear boundary-value problem for wave propagation over the free surface of lowviscosity fluid have been presented. Solution is found by the method of time-varying frequency, which is the Stokes’ method generalized for the dissipative wave processes. The asymptotic solution up to the third-order approximation upon the wave parameter has been found. It is shown that the frequency and damping rate of the nonlinear wave tend in time to the values corresponding to a linear problem. Nonlinear trajectories of fluid particles and the expression for transfer velocity in a low-viscosity Stokes fluid have been defined.

  5. Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.

     

    The axisymmetric model based on the Stokes equations is proposed to investigate the multi-ring pattern formation in two-layer creeping flow with variable thickness of layers. Each layer has uniform density and viscosity. The upper layer is lighter than the lower layer. The flow is generated by both surface and interface geometry. The effect of surface tension is supposed to be negligible. We apply the method of multiple scales to obtain the governing equations describing instability in the form of wave in the flow. Using the Fourier-Laplace method, we analyze the small-amplitude leading behavior of the instability. The asymptotic study reveals that this kind of instability manifests itself as axisymmetric wave which length is comparable with layer thickness; moreover, layer thicknesses play a major role in spatial distribution of wave extrema. The other model parameters alter mostly the wave amplitude. The equation relating extrema distribution to layer thicknesses is derived. We apply the obtained results to study a ring spacing rule observed for most multi-ring basins on the Moon. Using parameters of some lunar multi-ring basins we calculate the consecutive crest radii of the unstable wave and compare the results of simulation with the measured ring radii.

     

  6. Рассматривается движение частиц вязкой несжимаемой жидкости, вызванное распространением по свободной поверхности волны малой амплитуды. Получены уравнения движения жидких частиц при наличии бегущей или стоячей волны на поверхности бесконечно глубокого слоя. При распространении бегущей волны траектории имеют вид спирали, центр которой соответствует состоянию покоя. Влияние вязкости проявляется как в уменьшении амплитуды колебаний со временем, так и в отличии формы траекторий частиц, находящихся вблизи свободной поверхности и при заглублении. В случае стоячей волны движение каждой частицы происходит по отрезкам, длина которых с течением времени уменьшается. Направление движения изменяется от вертикального в пучностях до горизонтального в узлах.

    The motion of the particles of a viscous incompressible fluid caused by the proliferation of free surface waves of small amplitude is considered. The equations of motion of fluid particles in the presence of a traveling or a standing wave on the surface of an infinitely deep layer are obtained. At the propagation of a traveling wave the trajectories are spirals the centers of which correspond to a state of rest. The effect of viscosity is manifested as a decrease in the amplitude of oscillations over time, as well as by the fact that the trajectories of particles near the free surface and at burial are of different form. In the case of a standing wave the motion of each particle goes at intervals the length of which decreases with time. The direction of motion changes from the vertical at the antinodes to the horizontal at the nodes.

  7. В статье представлены результаты моделирования гидродинамических процессов, происходящих в рабочем пространстве капиллярных вискозиметров постоянного расхода трёх различных конфигураций. Результаты получены путем численного решения уравнений Навье-Стокса для ламинарного течения с использованием метода конечных элементов. Установлено влияние длины капиллярной трубки и формы дна цилиндра на метрологические характеристики вискозиметра.

    The results of the modeling of hydrodynamic processes in the operating space of 3 different types of fixed flow capillary viscometers are represented in the article. The results were obtained from computational solution of the Navier-Stokes equation for laminar flow with the use of finite-element method. The influence of capillary tube and cylinder bottom shape on the metrological performance of viscometer was established.

  8. Разработаны математические модели и сформулирована нелинейная краевая задача динамики тонкостенных оболочечных конструкций произвольной формы под действием ударного импульсного нагружения. Приводятся результаты моделирования нелинейных волновых процессов в составной оболочечной конструкции под действием взрыва.

    Mathematical models were developed and the nonlinear boundary value problem of dynamics thinwalled shells of the arbitrary form under action shock pulse is formulated. Dependence of processes of deformation on speed loading, compressibility of a material, finite deformations and large displacements of a shell middle surface, formation and kinetic of plasticity zones of a material during action of a shock wave are considered. Parameterization of a shell surface is carried out by bi-cubic splines. For the description of nonlinear, time and speed dependents of a shell material behavior with anisotropic hardening the generalized model of microplasticity is developed on the account of viscosity of deformation, hysteresis losses and Baushinger's effect. The solution of boundary value problems on the basis of difference schemes is constructed. Results of modeling of nonlinear wave processes in a assemble shell under action of explosion also are presented.

  9. В работе определены границы применимости квазистационарного подхода в моделировании динамики жидкости, испаряющейся с подложки (при постоянной площади контакта) и в открытой цилиндрической ячейке капли. Для сравнения рассматривается нестационарная модель. Нестационарная система уравнений (с полной формой записи уравнения движения) и квазистационарная система уравнений решаются численно. Расчеты проведены при различных значениях скорости испарения и капиллярного числа на примере капель воды и этиленгликоля. Анализ расчетных данных показал, что на финальной стадии испарения капли чистого растворителя результаты, полученные с использованием двух моделей, расходятся. На конечном этапе процесса скорость радиального течения, вычисленная с помощью нестационарной модели, точнее согласуется с экспериментальными данными, чем результат, полученный на базе квазистационарного подхода. Этот факт объясняется тем, что на последней стадии испарения квазистационарное приближение плохо работает ввиду стремительного относительного изменения толщины пленки и больших значений скоростей.

    Applicability limits of a quasisteady approach to modelling the fluid dynamics in evaporated drop on a substrate (with constant contact area) and in circular well are defined in this paper. A nonsteady model is considered for comparison. Quasisteady and nonsteady (with the full-form equation of motion) sets of equations have been solved numerically. The modeling is carried out at different values of evaporation rate and capillary number. Water and ethylene glycol drops were taken as examples. Analysis of calculated data shows that results obtained for the final stage of pure solvent evaporation by using two models differ from each other. Velocity of a radial flow calculated with the help of nonsteady model agrees with experimental data much better than the result obtained using a quasisteady approach at the final stage of process. This is because at the final stage of evaporation the quasisteady approach works poorly due to the rapid changes in the relative film thickness and high velocities.

  10. Рассмотрена нелинейная задача о распространении волн по свободной поверхности слоя вязкой несжимаемой жидкости бесконечной глубины в плоском случае. С помощью метода малого параметра данная нелинейная задача раскладывается на задачи в первых двух приближениях, которые последовательно разрешаются. Получены нелинейные выражения для компонент вектора скорости, динамического давления и формы свободной поверхности. Изучается движение частиц вязкой жидкости, вызванное распространением волны по свободной поверхности. Установлено, что вязкость жидкости оказывает существенное влияние на форму траекторий жидких частиц, которое проявляется как в уменьшении амплитуды колебаний с течением времени, так и в отличии траекторий вблизи свободной поверхности и при заглублении. Исследован нелинейный эффект Стокса, который заключается в наличии приповерхностного течения.

    The paper deals with the nonlinear problem of wave propagation on a free surface of an infinitely deep layer of viscous incompressible fluid on a plane. Using the method of a small parameter, this nonlinear problem is decomposed into problems at the first two approximations which are solved one by one. Nonlinear expressions for the components of a velocity vector, the dynamic pressure and the shape of a free surface are obtained. The motion of viscous fluid particles caused by wave propagation on a free surface is investigated. It is found that the viscosity of a liquid has significant effect on the shape of the trajectories of liquid particles, which is manifested as a decrease in the amplitude of oscillations over time, and in the trajectories dissimilarity near the free surface, and at the deepening. The nonlinear Stokes effect that indicates the presence of near-surface currents is analyzed.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref