Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'algebra':
Найдено статей: 63
  1. Аль Джабри Х.Ш., Родионов В.И.
    Граф частичных порядков, с. 3-12

    Любое бинарное отношение σX (где X - произвольное множество) порождает на множестве X2 характеристическую функцию: если (x,y)∈σ, то σ(x,y)=1, а иначе σ(x,y)=0. В терминах характеристических функций на множестве всех бинарных отношений множества X вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если X - конечное множество, то эта алгебраическая система - граф («граф графов»).

    Показано, что если σ и τ - смежные отношения, то σ является частичным порядком тогда и только тогда, когда τ является частичным порядком. Исследованы некоторые особенности строения графа G(X) частичных порядков. В частности, если X состоит из n элементов, а T0(n) - это число помеченных T0-топологий, определенных на множестве X, то количество вершин в графе G(X) равно T0(n), а количество компонент связности равно T0(n-1).

    Для всякого отношения частичного порядка σ определяется понятие его опорного множества S(σ), являющегося некоторым подмножеством множества X. Если X - конечное множество, а частичные порядки σ и τ принадлежат одной и той же компоненте связности графа G(X), то равенство S(σ)=S(τ) имеет место тогда и только тогда, когда σ=τ. Показано, что в каждой компоненте связности графа G(X) совокупность опорных множеств ее элементов является специфическим частично упорядоченным множеством относительно естественного отношения включения множеств.

    Al' Dzhabri K.S., Rodionov V.I.
    The graph of partial orders, pp. 3-12

    Any binary relation σX (where X is an arbitrary set) generates a characteristic function on the set X2: if (x,y)∈σ, then σ(x,y)=1, otherwise σ(x,y)=0. In terms of characteristic functions on the set of all binary relations of the set X we introduced the concept of a binary reflexive relation of adjacency and determined the algebraic system consisting of all binary relations of a set and of all unordered pairs of various adjacent binary relations. If X is finite set then this algebraic system is a graph (“a graph of graphs”).

    It is shown that if σ and τ are adjacent relations then σ is a partial order if and only if τ is a partial order. We investigated some features of the structure of the graph G(X) of partial orders. In particular, if X consists of n elements, and T0(n) is the number of labeled T0-topologies defined on the set X, then the number of vertices in a graph G(X) is T0(n), and the number of connected components is T0(n-1).

    For any partial order σ there is defined the notion of its support set S(σ), which is some subset of X. If X is finite set, and partial orders σ and τ belong to the same connected component of the graph G(X), then the equality S(σ)=S(τ) holds if and only if σ=τ. It is shown that in each connected component of the graph G(X) the union of support sets of its elements is a specific partially ordered set with respect to natural inclusion relation of sets.

  2. Любое бинарное отношение $\sigma\subseteq X^2$ (где $X$ - произвольное множество) порождает на множестве $X^2$ характеристическую функцию: если $(x,y)\in\sigma,$ то $\sigma(x,y)=1,$ а иначе $\sigma(x,y)=0.$ В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф («граф графов»).
    Показано, что если $\sigma$ и $\tau$ - смежные отношения, то $\sigma$ является рефлексивно-транзитивным отношением тогда и только тогда, когда $\tau$ является рефлексивно-транзитивным отношением. Исследованы некоторые особенности строения графа $G(X)$ рефлексивно-транзитивных отношений. В частности, если $X$ состоит из $n$ элементов, а $T_0(n)$ - это число помеченных $T_0$-топологий, определенных на множестве $X,$ то количество компонент связности равно $\sum_{m=1}^n S(n,m) T_0(m-1),$ где $S(n,m)$ - числа Стирлинга 2-го рода. $($Хорошо известно, что количество вершин в графе $G(X)$ равно $\sum_{m=1}^nS(n,m) T_0(m).)$

    Any binary relation $\sigma\subseteq X^2$ (where $X$ is an arbitrary set) generates on the set $X^2$ a characteristic function: if $(x,y)\in\sigma,$ then $\sigma(x,y)=1,$ otherwise $\sigma(x,y)=0.$ In terms of characteristic functions we introduce on the set of all binary relations of the set $X$ the concept of a binary reflexive relation of adjacency and determine an algebraic system consisting of all binary relations of the set and of all unordered pairs of various adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs’’).
    It is shown that if $\sigma$ and $\tau$ are adjacent relations then $\sigma$ is a reflexive-transitive relation if and only if $\tau$ is a reflexive-transitive relation. Several structure features of the graph $G(X)$ of reflexive-transitive relations are investigated. In particular, if $X$ consists of $n$ elements, and $T_0(n)$ is the number of labeled $T_0$-topologies defined on the set $X,$ then the number of connected components is equal to $\sum_{m=1}^nS(n,m) T_0(m-1),$ where $S(n,m)$ are Stirling numbers of second kind. $($It is well known that the number of vertices in a graph $G(X)$ is equal to $\sum_{m=1}^nS(n,m) T_0(m).)$

  3. Аль Джабри Х.Ш., Родионов В.И.
    Граф ациклических орграфов, с. 441-452

    В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ — конечное множество, то эта алгебраическая система — граф («граф графов»). Доказано, что диаметр графа бинарных отношений равен 2. Показано, что если $\sigma$ и $\tau$ — смежные отношения, то $\sigma$ — ациклическое отношение (конечный ациклический орграф) тогда и только тогда, когда $\tau$ — ациклическое отношение. Получена явная формула для числа компонент связности графа ациклических отношений.

    Al' Dzhabri K.S., Rodionov V.I.
    The graph of acyclic digraphs, pp. 441-452

    The paper introduces the concept of a binary reflexive relation of adjacency on the set of all binary relations of a set $X$ (in terms of characteristic functions) and determines an algebraic system consisting of all binary relations of the set and of all unordered pairs of adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs”). It is proved that the diameter of a graph of binary relations is 2. It is shown that if $\sigma$ and $\tau$ are adjacent relations, then $\sigma$ is an acyclic relation (finite acyclic digraph) if and only if $\tau$ is an acyclic relation. An explicit formula for the number of connected components of a graph of acyclic relations is received

  4. В предыдущих работах авторов на множестве всех бинарных отношений множества $X$ введено понятие бинарного рефлексивного отношения смежности и определена алгебраическая система, состоящая из всех бинарных отношений множества $X$ и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф (граф бинарных отношений $G$). В настоящей работе для ациклических и транзитивных орграфов вводится понятие опорного множества: это совокупности $S(\sigma)$ и $S'(\sigma)$, состоящие из вершин орграфа $\sigma\in G$, имеющих нулевую полустепень захода и исхода соответственно. Доказано, что если $G_\sigma$ - связная компонента графа $G$, содержащая ациклический или транзитивный орграф $\sigma\in G$, то $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. Получена формула для числа транзитивных орграфов, имеющих фиксированное опорное множество. Аналогичная формула для числа ациклических орграфов, имеющих фиксированное опорное множество, получена авторами ранее.

    Al' Dzhabri K.S., Rodionov V.I.
    On support sets of acyclic and transitive digraphs, pp. 153-161

    In previous works of the authors, the concept of a binary reflexive adjacency relation was introduced on the set of all binary relations of the set $X$, and an algebraic system consisting of all binary relations of the set $X$ and of all unordered pairs of adjacent binary relations was defined. If $X$ is a finite set, then this algebraic system is a graph (graph of binary relations $G$). The current paper introduces the notion of a support set for acyclic and transitive digraphs. This is the collections $S(\sigma)$ and $S'(\sigma)$ consisting of the vertices of the digraph $\sigma\in G$ that have zero indegree and zero outdegree, respectively. It is proved that if $G_\sigma $ is a connected component of the graph $G$ containing the acyclic or transitive digraph $\sigma\in G$, then $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. A formula for the number of transitive digraphs having a fixed support set is obtained. An analogous formula for the number of acyclic digraphs having a fixed support set was obtained by the authors earlier.

  5. В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.

    The influence of colored noise on the equilibrium regimes of nonlinear dynamical systems is investigated. To study the response of the system to small perturbations, we use an asymptotic approach that develops the stochastic sensitivity function technique. The stochastic sensitivity of equilibrium in a general multidimensional dynamical system is defined by some matrix. For this stochastic sensitivity matrix, we obtain a matrix algebraic equation. An exact solution of this equation is given for an important class of nonlinear oscillators with perturbations in the form of colored noises. This theory is applied to the parametric study of the response of the electronic generator with hard excitation to colored noises with various correlation times. The dependence of the dispersion of random states on the characteristic correlation time is investigated. It is shown that this dependence can be nonmonotonic and have maxima corresponding to the resonances. The paper discusses the probabilistic mechanism of the stochastic generation of large-amplitude oscillations caused by color noise.

  6. В пространстве прерывистых функций исследовано параметрическое семейство подпространств специального вида и подпространство, представляющее их пересечение. Оно содержит в себе пространство функций ограниченной вариации. Исследована решетка подпространств, зависящая от параметра. Исследованы вопросы существования интеграла Римана–Стилтьеса на элементах подпространств. Доказана полнота подпространств (в каждом подпространстве используется собственная норма). Исследованы соотношения между нормами.

    In the space of regulated functions the parametrical family of subspaces of special kind is investigated. Subspace crossing representing them is investigated too. It includes the space of functions of bounded variation. The lattice of subspaces depending from parameter is investigated. Questions of existence of integral Riemann–Stieltjes for elements of subspaces are investigated. Completeness of subspaces is proved (for everyone subspace own norm is used). Relations between norms are investigated.

  7. Грызлов А.А., Бастрыков Е.С., Головастов Р.А.
    О точках одного бикомпактного расширения N, с. 10-17

    Изучается бикомпактное расширение счётного дискретного пространства, построенное как пространство Стоуна одной булевой алгебры. Получены новые классы точек этого расширения.

    Gryzlov A.A., Bastrykov E.S., Golovastov R.A.
    About points of compactification of N, pp. 10-17

    We consider a compactification of a countable discrete space constructed as a Stone space of a Boolean algebra. Some new points of the compactification are constructed.

  8. Рассматривается компактификация BN счётного дискретного пространства N. В данной работе описаны свойства замыканий подмножеств BN, состоящих из различных классов точек. Показано существование точек, не принадлежащих классам, выделенным ранее.

    Bastrykov E.S.
    On closures of countable subsets of BN, pp. 15-20

    We consider a compactification BN of a countable discrete space N. The paper describes some properties of the closures of subsets of BN, which consist of points belonging to different classes. We prove the existence of points which do not belong to the classes obtained before.

  9. Грызлов А.А., Головастов Р.А.
    О пространствах Стоуна некоторых булевых алгебр, с. 11-16

    Pассматриваются пространства Стоуна BD и BS двух булевых алгебр. Доказывается, что множество свободных ультрафильтров пространства BD и пространство BS гомеоморфны канторову совершенному множеству.

    Gryzlov A.A., Golovastov R.A.
    The Stone spaces of Boolean algebras, pp. 11-16

    We consider the Stone spaces BD and BS of two Boolean algebras. We prove, that the subspace ĈBD of free ultrafilters of the space BD, and the space BS are homeomorphic to the Cantor set.

  10. В работе рассматривается пространство Стоуна булевой алгебры подмножеств одного счетного частично упорядоченного множества. Главной особенностью этого множества является наличие бесконечного числа непосредственных последователей у каждого его элемента. Отсюда следует, что каждый фиксированный ультрафильтр данного пространства Стоуна является неизолированной точкой, а подмножество свободных ультрафильтров всюду плотно. В работе дана классификация точек пространства, доказано, что есть свободные ультрафильтры, которые не являются пределами последовательностей фиксированных ультрафильтров, а также свободные ультрафильтры, определяемые цепями частично упорядоченного множества. Рассмотрены кардинальные инварианты подпространства свободных ультрафильтров. Доказано, что это подпространство имеет счетное число Суслина, но не сепарабельно.

     

    Gryzlov A.A., Golovastov R.A.
    On the density and Suslin number of subsets of one Stone space, pp. 18-24

    The paper concerns the Stone space of the Boolean algebra of subsets of one countable partially ordered set. The main feature of this set is the existence of countably many successors of each of its elements. From this property it follows that every fixed ultrafilter of this Stone space is a nonisolated point; the subset of free ultrafilters is dense everywhere. The classification of space points is given; the fact that there are free ultrafilters, which are not limits of sequences of fixed ultrafilters, as well as free ultrafilters determined by chains of partially ordered set, is proved. The cardinal invariants of the subspace of free ultrafilters are considered. It is shown that this subspace has the countable Suslin number, but is not separable.

     


Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref