Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'asymptotic formulas':
Найдено статей: 15
  1. Казарников А.В., Ревина С.В.
    Бифуркации в системе Рэлея с диффузией, с. 499-514

    Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.

    Kazarnikov A.V., Revina S.V.
    Bifurcations in a Rayleigh reaction-diffusion system, pp. 499-514

    We consider a reaction-diffusion system with a cubic nonlinear term, which is a special case of the Fitzhugh-Nagumo system and an infinite-dimensional version of the classical Rayleigh system. We assume that the spatial variable belongs to an interval, supplemented with Neumann boundary conditions. It is well-known that in that specific case there exists a spatially-homogeneous oscillatory regime, which coincides with the time-periodic solution of the classical Rayleigh system. We show that there exists a countable set of critical values of the control parameter, where each critical value corresponds to the branching of new spatially-inhomogeneous auto-oscillatory or stationary regimes. These regimes are stable with respect to small perturbations from some infinite-dimensional invariant subspaces of the system under study. This, in particular, explains the convergence of numerical solution to zero, periodic or stationary solution, which is observed for some specific initial conditions and control parameter values. We construct the asymptotics for branching solutions by using Lyapunov-Schmidt reduction. We find explicitly the first terms of asymptotic expansions and study the formulas for general terms of asymptotics. It is shown that a soft loss of stability occurs in invariant subspaces. We study numerically the evolution of secondary regimes due to the increase of control parameter values and observe that the secondary periodic solutions are transformed into stationary ones as the control parameter value increases. Next, the amplitude of stationary solutions continues to grow and the solution asymptotically converges to the square wave regime.

  2. Построен характеристический многочлен спектральной задачи дифференциального уравнения первого порядка на отрезке со спектральным параметром в краевом условии с интегральным возмущением, которое является целой аналитической функцией от спектрального параметра. На основе формулы характеристического многочлена доказаны выводы об асимптотике спектра возмущенной спектральной задачи.

    This work is devoted to the construction of a characteristic polynomial of the spectral problem of a first-order differential equation on an interval with a spectral parameter in a boundary value condition with integral perturbation which is an entire analytic function of the spectral parameter. Based on the characteristic polynomial formula, conclusions about the asymptotics of the spectrum of the perturbed spectral problem are established.

  3. Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.

    The generalized Kuramoto-Sivashinsky equation in the case when the unknown function depends on two spatial variables is considered. This version of the equation is used as a mathematical model of formation of nonhomogeneous relief on a surface of semiconductors under ion beam. This equation is studied along with homogeneous Neumann boundary conditions in three regions: a rectangle, a square, and an isosceles triangle. The problem of local bifurcations in the case when spatially homogeneous equilibrium states change stability is studied. It is shown that for these three boundary value problems post-critical bifurcations occur and, as a result, spatially nonhomogeneous solutions bifurcate in each of these boundary value problems. For them asymptotic formulas are obtained. The dependence of the nature of bifurcations on the choice and geometry of the region is revealed. In particular, the type of dependence on spatial variables is determined. The problem of Lyapunov stability of spatially nonhomogeneous solutions is studied. Well-known methods from dynamical systems theory with an infinite-dimensional phase space: integral (invariant) manifolds, normal Poincare-Dulac forms in combination with asymptotic methods are used to analyze the bifurcation problems.

  4. В работе рассматриваются динамические биматричные игры с интегральными показателями, дисконтированными на бесконечном интервале времени. Динамика системы задается дифференциальными уравнениями, описывающими изменение поведения игроков в зависимости от поступающих сигналов управления. Рассматривается задача построения равновесных траекторий в рамках минимаксного подхода, предложенного Н.Н. Красовским и А.И. Субботиным в теории дифференциальных игр. Используется конструкция динамического равновесия по Нэшу, которая развита в работах А.Ф. Клейменова. Для синтеза оптимальных стратегий управления применяется принцип максимума Л.С. Понтрягина в сочетании с методом характеристик для уравнений Гамильтона-Якоби. Получены аналитические формулы для кривых переключения оптимальных стратегий управления. Проведен анализ чувствительности равновесных решений в зависимости от параметра дисконтирования в интегральных функционалах выигрыша. Установлена асимптотическая сходимость равновесных траекторий по параметру дисконтирования к решению динамической биматричной игры со среднеинтегральными функционалами выигрыша, которые исследовались в работах В.И. Арнольда. Рассмотрено приложение полученных результатов к динамической модели инвестирования на финансовых рынках.

    The paper is devoted to the analysis of dynamical bimatrix games with integral indices discounted on an infinite time interval. The system dynamics is described by differential equations in which players' behavior changes according to incoming control signals. For this game, a problem of construction of equilibrium trajectories is considered in the framework of minimax approach proposed by N.N. Krasovskii and A.I. Subbotin in the differential games theory. The game solution is based on the structure of dynamical Nash equilibrium developed in papers by A.F. Kleimenov. The maximum principle of L.S. Pontryagin in combination with the method of characteristics for Hamilton-Jacobi equations are applied for the synthesis of optimal control strategies. These methods provide analytical formulas for switching curves of optimal control strategies. The sensitivity analysis for equilibrium solutions is implemented with respect to the discount parameter in the integral payoff functional. It is shown that equilibrium trajectories in the problem with the discounted payoff functional asymptotically converge to the solution of a dynamical bimatrix game with average integral payoff functionals examined in papers by V.I. Arnold. Obtained results are applied to a dynamical model of investments on financial markets.

  5. Рассматривается одна из версий обобщенного вариационного уравнения Гинзбурга-Ландау, дополненная периодическими краевыми условиями. Для такой краевой задачи изучен вопрос о существовании, устойчивости и локальных бифуркациях одномодовых состояний равновесия. Показано, что в случае близком к критическому трехкратного нулевого собственного значения в задаче об устойчивости одномодовых пространственно неоднородных состояний равновесия реализуются докритические бифуркации двумерных инвариантных торов, заполненных пространственно неоднородными состояниями равновесия. Анализ поставленной задачи опирается на такие методы теории бесконечномерных динамических систем как теория инвариантных многообразий и аппарат нормальных форм. Для решений, формирующих инвариантные торы, получены асимптотические формулы.

    One of the versions of the generalized variational Ginzburg-Landau equation is considered, supplemented by periodic boundary conditions. For such a boundary value problem, the question of existence, stability, and local bifurcations of single-mode equilibrium states is studied. It is shown that in the case of a nearly critical threefold zero eigenvalue, in the problem of stability of single-mode spatially inhomogeneous equilibrium states, subcritical bifurcations of two-dimensional invariant tori filled with spatially inhomogeneous equilibrium states are realized. The analysis of the stated problem is based on such methods of the theory of infinite-dimensional dynamical systems as the theory of invariant manifolds and the apparatus of normal forms. Asymptotic formulas are obtained for the solutions that form invariant tori.

  6. Для дискретного оператора Шредингера, отвечающего квантовому волноводу, с экспоненциально убывающим потенциалом вида εV доказано, что в окрестности особенностей невозмущенной функции Грина для малых ε существуют квазиуровни (собственные значения или резонансы), для которых найдены асимптотические формулы.

    We proved that the discrete Schrödinger operator corresponding to a quantum waveguide with a small exponentially decreasing potential of the form εV has quasi-levels (eigenvalues or resonances). The asymptotic formulas for these quasi-levels are obtained.

  7. В последние два десятилетия углеродные нанотрубки активно исследуются в физической литературе, что обусловлено многообещающими перспективами их применения в микроэлектронике; в то же время интересные математические свойства используемых при этом гамильтонианов, к сожалению, часто остаются без должного внимания математиков. В настоящей статье проведено математически строгое исследование спектральных свойств гамильтониана $H_{\varepsilon}=H_0+\varepsilon V$ где гамильтониан электрона в углеродной нанотрубке типа «зигзаг» $H_0$ записан в приближении сильной связи, а оператор $\varepsilon V$ (потенциал) имеет вид

    $$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$

    здесь $\varepsilon >0$, $V_1,V_2$ - вещественные числа, $\delta_{n0}$ - символ Кронекера. Гамильтониан $H_{\varepsilon}$ отвечает углеродной нанотрубке с примесью, равномерно распределенной в сечении нанотрубки. Данный гамильтониан является разностным оператором, определенным на функциях из $(l^2(\Omega ))^2$, где $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, удовлетворяющих периодическим граничным условиям. В статье, в частности, доказано, что для каждой подзоны спектра вблизи одной из граничных точек подзоны в случае малых потенциалов существует ровно один квазиуровень, то есть собственное значение или резонанс. Для квазиуровней получены асимптотические формулы вида

    $$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
    +O(\varepsilon^3),$$

    где $l$ - номер подзоны, $N$ - число атомов в сечении нанотрубки, $\pm$ - знак $\lambda$. Также найдено условие того, когда квазиуровень является собственным значением.

     

    Morozova L.E., Chuburin Y.P.
    Quasi-levels of the Hamiltonian for a carbon nanotube, pp. 76-83

    In the past two decades, carbon nanotubes have been actively investigated in the physics literature, because of the promising prospects for their use in microelectronics; at the same time, interesting mathematical properties of used Hamiltonians, unfortunately, are often overlooked by mathematicians. In this paper, we carry out the mathematically rigorous investigation of spectral properties of the Hamiltonian $H_{\varepsilon}=H_0+\varepsilon V$, where the Hamiltonian $H_0$ of an electron in a zigzag carbon nanotube is written in the tight-binding approach, and the operator $\varepsilon V$ (potential) has the form

    $$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$

    (here $\varepsilon >0$, $V_1,V_2$ are real numbers, $\delta_{n0}$ is the Kronecker delta). The Hamiltonian $H_{\varepsilon}$ corresponds to the carbon nanotube with an impurity uniformly distributed over the cross section of the nanotube. This Hamiltonian is the difference operator defined on functions from $(l^2(\Omega ))^2$, where $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, satisfying the periodic boundary conditions. In particular, in this paper we prove that for each subband of the spectrum near one of the boundary points of the subband exactly one quasilevel (i.e. eigenvalue or resonance) exists in the case of small potentials. For quasilevels, the asymptotic formulas of the form

    $$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
    +O(\varepsilon^3),$$

    are obtained, where $l$ is the subband number, $N$ is the number of atoms in the cross section of the nanotube, and $\pm$ is the sign of the $\lambda$. Also, we find the condition when a quasilevel is an eigenvalue.

     

  8. Рассматриваются процессы образования периодических структур при ионной бомбардировке. В качестве математической модели выбрано двумерное обобщение уравнения Курамото–Сивашинского. Аналогичное уравнение было получено и в работе Бредли–Харпера. С математической точки зрения изрезанный рельеф в результате ионной бомбардировки может быть объясним как локальные бифуркации плоского профиля при смене устойчивости.

    Для описания такого рельефа получены асимптотические формулы. Для исследования нелинейной краевой задачи использован метод теории бифуркаций для задач с бесконечномерным фазовым пространством. В частности, использован метод построения нормальных форм, ведущий свое начало от алгоритма Крылова–Боголюбова.

    Kulikov A.N., Kulikov D.A., Rudyi A.S.
    Bifurcation of the nanostructures induced by ion bombardment, pp. 86-99

    We consider ion-bombardment-induced processes for formation of periodic structures. As a mathematical model, we have chosen the generalized two-dimensional Kuramoto–Sivashinsky equation which is equivalent to the equation obtained by Bradley–Harper. The jagged relief obtained due to ionic bombardment can be explained from a mathematical point of view as local bifurcations of flat profile involving an exchange of stabilities.

    To describe the above relief asymptotic formulas are obtained. The bifurcation theory method for problems with infinite dimensional phase space is used to study nonlinear boundary value problem. In particular, we use normal form building which springs from Krylov–Bogolyubov method of averaging.

  9. Исследуются спектральные свойства дискретного оператора Шредингера для бесконечной полосы с нулевыми граничными условиями. Доказано, что для малых убывающих потенциалов вблизи особенностей невозмущенной функции Грина (граничных точек подзон) возникают собственные значения и резонансы, найдена их асимптотика. Описана картина рассеяния; явление дифракции (рассеяние, главным образом, по конечному числу выделенных направлений) трансформируется в рассматриваемой квазиодномерной системе в волны во времени вероятностей прохождения и отражения. Получены простые формулы для данных вероятностей вблизи граничных точек подзон (это отвечает малым скоростям квантовой частицы) в случае малых потенциалов.

    Tinyukova T.S., Chuburin Y.P.
    The discrete Schrödinger equation for a quantum waveguide, pp. 80-93

    We investigate the spectral properties of the discrete Schrödinger operator for the infinite band with zero boundary conditions. We prove that the eigenvalues and resonances arise for the small decreasing potentials near singularities of the non-perturbed Green function (boundary points of the subbands) and we find their asymptotic behavior. The scattering picture is described: the diffraction (i.e. the scattering mainly in the finite number of preferential directions) transforms into probability waves in time of the reflection and propagation in the considered quasi-1D system. The simple formulas for these probabilities are obtained near boundary points of the subbands (this corresponds to small velocities of the quantum particles) for the small potentials.

  10. В статье рассматривается оператор Штурма-Лиувилля с вещественным квадратично интегрируемым потенциалом. Граничные условия являются неразделенными. В одно из этих граничных условий входит квадратичная функция спектрального параметра. Изучены некоторые спектральные свойства оператора. Доказаны вещественность и отличность от нуля собственных значений и отсутствие присоединенных функций к собственным функциям, выведена асимптотическая формула для спектра оператора и получено представление характеристической функции в виде бесконечного произведения. Результаты статьи играют важную роль при решении обратных задач спектрального анализа для дифференциальных операторов.

    The article considers the Sturm-Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref