Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'ballistic':
Найдено статей: 2
  1. Резольвентный метод, базирующийся на преобразованиях Лежандра, применен для интегрирования уравнений баллистики в среде со степенным по скорости сопротивлением, коэффициент которого падает линейно с высотой. Во втором приближении по градиенту плотности и с учетом уменьшения с высотой ускорения свободного падения g(y) задача сведена к линейному дифференциальному уравнению. Его решением получены универсальные формулы для неоднородностной добавки к резольвентной функции fn(b), а также к вертикальной и горизонтальной координатам δy(b), δx(b), b = tgθ - наклон траектории. Подробно рассмотрен случай квадратичного сопротивления.

     

    The resolvent method based on Legendre transformation was applied to integrate ballistic equations of a heavy point mass in inhomogeneous medium with the drag force being power-law with respect to speed, at that the coefficient of the drag force decreases linearly with height y. General expressions were obtained for resolvent function a′′bb(b) with a(b) being an intercept and b = tgθ, where я is inclination angle. In the second order by gradient c/m−1 of perturbative approach, the universal formulas for δa′′bb(b)-, δx(b)-, δy(b)-additions were derived. The case of Releigh resistance was considered particularly in frames of the method above and inhomogeneity influence on the motion was investigated. The falling of gravity g(y) is taken into consideration too.

     

  2. Проективно-двойственные переменные использованы для описания геометрии движения точечной массы в движущейся системе наблюдения, связанной с воздушной средой, характеризующейся квадратичным по скорости законом для лобового сопротивления. Через обратный переход к неподвижной системе и обратное преобразование Лагранжа выведены степенные формулы для абсолютных координат и времени: $x(b)$, $y(b)$, $z(b)$ и $t(b)$, $b = \rm{tg}\, \Theta$ — наклон относительной траектории, в области малых углов вылета $\Theta_0 < 15^{\circ}$. Выражения используют ключевые параметры движения: $b_0 = \rm{tg}\, \Theta_0$, $\Theta_0$ — угол вылета, $R_a$ — вершинный радиус кривизны траектории и $\beta_0$ — отношение квадрата разворотной скорости к квадрату предельной скорости. Малое отклонение полученных аппроксимаций от классических интегральных выражений обусловлено эффектом автоподстройки, заключающемся в уменьшении параметра $\beta_0$ с ростом начального наклона траектории $b_0$. Для стартовых сил сопротивления, не превышавших $1.15$ $\rm{m\,g}$, и скоростей ветра, меньших 40 м/с, и в вышеуказанном интервале углов вылета абсолютные погрешности составляли величины порядка дециметров, а относительные не превышали десятых долей процента. Ввиду того, что численная реализация формул «почти» алгебраическая, они могут быть внедрены в простейшие баллистические калькуляторы как используемые для стрельбы в условиях ветра, так и с движущегося орудия/по движущейся мишени.

    Precise trajectory equation is deduced by using dual-projective variables for a heavy projectile motion in medium with quadratic in speed longitudinal wind. By integration by parts there were received the power type formulas for low angle trajectories with initial slopes $\Theta_0 < 15^{\circ}$. They use the following key parameters of motion, namely $b_0 = \rm{tg}\,\Theta_0$, with $\Theta_0$ as an angle of throwing, $R_a$ as the top curvature radius and $\beta_0$ as dimensionless speed square in the highest point of the trajectory. These formulas for the coordinates and time $x(b)$, $y(b)$, $z(b)$ and $t(b)$ with $b = \rm{tg}\, \Theta$ being the current slope of the trajectory display strongly the effect of self-improving of accuracy due to diminishing of $\beta_0$ with the $b_0$ growing. Their precision when compared to exact integral formulas occurs to consist of 0.1-0.3 %% and this takes place in wide range of wind speeds up to $40\,mps$ and with starting drag forces of $1.15$ $\rm{m\,g}$ value. Due to their simplicity and quasi-algebraic type the formulas may be easily implemented in ballistic calculator, especially for the guns shooting as they moving at high speeds and in moving targets.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref