Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье разработаны методы, необходимые для решения задач конформного отображения многогранников в $\mathbb{R}^3$. Результаты получены с использованием алгебры кватернионов и геометрических представлений. Определены прямое и обратное конформные отображения: верхнего полупространства на единичный шар, шаровой луночки на двугранный угол, двугранного и многогранного углов на верхнее полупространство. При помощи полученных результатов найдены решения прямой и обратной задач конформного отображения многогранников на верхнее полупространство. Решение прямой задачи конформного отображения основано на результатах теоремы Кристоффеля-Шварца. Решение обратной задачи выполнено методом последовательных конформных отображений. В целом полученные взаимно однозначные отображения основаны на том, что по теореме Лиувилля все конформные диффеоморфизмы любой области в пространстве являются преобразованиями Мёбиуса.
Methods necessary to solve problems of conformal mapping of polyhedra in $\mathbb{R}^3$ are developed. The results are obtained with the use of quaternion algebra and geometric representations. The direct and inverse conformal mappings are defined: those of the upper half-space onto the unit ball, those of a ball crescent onto the dihedral angle and those of dihedral and polyhedral angles onto the upper half-space. Solutions to the direct and inverse problems of conformal mapping of the polyhedrons onto the upper half-space are found using the results obtained. The solution to the direct problem of conformal mapping is based on the results of the Christoffel-Schwarz theorem. The solution of the inverse problem is obtained by the method of successive conformal mappings. In general, the one-to-one mappings obtained are based on the fact that, by the Liouville theorem, all conformal diffeomorphisms of any area in the space are the Möbius transformations.
-
Приближенный метод решения задачи конформного отображения произвольного многоугольника на единичный круг, с. 107-129В статье разработано приближенно-аналитическое решение задачи конформного отображения внутренних точек произвольного многоугольника на единичный круг. На предварительном этапе задача конформного отображения сформулирована в виде краевой задачи (задача Шварца). Последняя сведена к решению интегрального уравнения Фредгольма второго рода с ядром типа Коши относительно неизвестной комплексной функции плотности на границе области с последующим вычислением интеграла Коши. Разработанное приближенно-аналитическое решение основано на разложении ядра Коши в системе многочленов Лежандра первого и второго рода. Выполнена априорная и апостериорная оценки сходимости и точности заданного решения. Определены экспоненциальная сходимость решения в $L_2\left([0,1]\right)$ и полиномиальная в $C\left([0,1]\right)$. Для наглядного сравнения результативности разработанного решения приведены расчеты на тестовых примерах.
конформное отображение, произвольный многоугольник, задача Шварца, логарифмический потенциал двойного слоя, комплексная функция плотности, уравнение Фредгольма, многочлены Лежандра
Approximate method for solving the problem of conformal mapping of an arbitrary polygon to a unit circle, pp. 107-129In the article, an approximate analytical solution of the problem of conformal mapping of internal points of an arbitrary polygon to a unit circle is developed. At the preliminary stage, the conformal mapping problem is formulated as a boundary value problem (Schwartz problem). The latter is reduced to the solution of the Fredholm integral equation of the second kind with a Cauchy-type kernel with respect to an unknown complex density function at the boundary domain, followed by the calculation of the Cauchy integral. The developed approximate analytical solution is based on the Cauchy kernel decomposition in the Legendre polynomial system of the first and second kind. A priori and a posteriori estimates of the convergence and accuracy of the given solution are fulfilled. The exponential convergence of the solution in $L_2\left([0,1]\right)$ and the polynomial one in $C\left([0,1]\right)$ are defined. Calculations on test examples are given for a visual comparison of the effectiveness of the developed solution.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.