Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
publication_info">
Задача с данными на характеристиках для нагруженной системы гиперболических уравнений, с. 353-364Рассматривается задача с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в прямоугольной области. Исследуются вопросы существования и единственности классического решения рассматриваемой задачи, а также непрерывной зависимости решения от исходных данных. Предлагается новый подход к решению задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка на основе введения новых функций. Путем введения новых неизвестных функций задача сводится к эквивалентному семейству задач Коши для нагруженной системы дифференциальных уравнений с параметрами и интегральным соотношениям. Предложен алгоритм нахождения приближенного решения эквивалентной задачи и доказана его сходимость. Установлены условия однозначной разрешимости задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в терминах коэффициентов системы.
нагруженные системы гиперболических уравнений, задача с данными на характеристиках, семейства задач Коши, алгоритм, критерий разрешимостиpublication_info">
Problem with data on the characteristics for a loaded system of hyperbolic equations, pp. 353-364We consider a problem with data on the characteristics for a loaded system of hyperbolic equations of the second order on a rectangular domain. The questions of the existence and uniqueness of the classical solution of the considered problem, as well as the continuity dependence of the solution on the initial data, are investigated. We propose a new approach to solving the problem with data on the characteristics for the loaded system of hyperbolic equations second order based on the introduction new functions. By introducing new unknown functions the problem is reduced to an equivalent family of Cauchy problems for a loaded system of differential with a parameters and integral relations. An algorithm for finding an approximate solution to the equivalent problem is proposed and its convergence is proved. Conditions for the unique solvability of the problem with data on the characteristics for the loaded system of hyperbolic equations of the second order are established in the terms of coefficient's system.
-
publication_info">
О корректности краевых задач и непрерывной зависимости периодических решений управляемых систем от параметров, с. 11-21Для общей краевой задачи функционально-дифференциального уравнения получены условия непрерывной зависимости решения от параметров. Результаты применены к исследованию корректности линейной общей краевой задачи для нелинейного дифференциального уравнения с отклоняющимся аргументом и непрерывной зависимости периодических решений управляемых систем от значений управления и отклонения аргумента.
функционально-дифференциальные уравнения, краевые задачи, непрерывная зависимость решения от параметров, периодические решения управляемых системpublication_info">
On a correctness of boundary value problems and continuous dependence of periodic solutions of controllable systems on parameters, pp. 11-21Conditions for continuous dependence on parameters of solution of a general boundary value problem are obtained for a functional-differential equation. The results are applied to investigation of a correctness of a linear general boundary value problem for the nonlinear differential equation with divergentargument and to problem of continuous dependence of periodic solutions of controllable system on control and divergence values.
-
publication_info">
О равномерно непрерывной зависимости решения задачи Коши от параметра, с. 22-29Утверждается, что если в дополнение к условиям существования и единственности решения x(t, t0, μ) n-векторной задачи Коши dx/dt = f(t, x, μ) (t ∈ I, μ ∈ M), x(t0) = x0 и непрерывной зависимости его от параметра μ ∈ M потребовать равностепенную непрерывность семейства {f(t, x, ·)}(t,x), то x(t, t0, μ) равномерно непрерывно зависит от параметра μ на открытом множестве M. Для линейной n×n-матричной задачи Коши dX/dt = A(t, μ)X + (t, μ) (t ∈ I, μ ∈ M), X(t0, μ) = X0(μ) аналогичное утверждение доказывается в предположении равномерной произвольной малости интегралов ∫I||A(t, μ1) − A(t, μ2)|| dt и ∫I||(t, μ1) − (t, μ2)|| dt при достаточной малости ||μ1 − μ2|| (μ1, μ2 ∈ M).
publication_info">
On uniform continuous dependence of solution of Cauchy problem on parameter, pp. 22-29We prove that if, in addition to the assumptions that guarantee existence, uniqueness and continuous dependence on parameter μ ∈ M of solution x(t, t0,μ) of a n-dimensional Cauchy problem dx/dt = f(t, x, μ) (t ∈ I, μ ∈ M), x(t0) = x0 one requires that the family {f(t, x, ·)}(t,x) is equicontinuous, then the dependence of x(t, t0,μ) on parameter μ in an open M is uniformly continuous. Analogous result for a linear n × n-dimensional Cauchy problem dX/dt = A(t, μ)X + (t, μ) (t ∈ I, μ ∈ M), X(t0, μ) = X0(μ) is valid under the assumption that the integrals ∫I||A(t, μ1) − A(t, μ2)||dt and ∫I||(t, μ1) − (t, μ2)||dt are uniformly arbitrarily small, provided that ||μ1 − μ2||, μ1, μ2 ∈ M, is sufficiently small.
-
publication_info">
Корректная разрешимость задач управления для систем дифференциальных уравнений неявного вида, с. 49-64Сформулированы теоремы о существовании решений, оценках решений и корректной разрешимости уравнений с накрывающими отображениями в произведении метрических пространств. Рассмотрены условия накрывания оператора Немыцкого в функциональных пространствах. Утверждения о накрывающих отображениях применяются к исследованию управляемых систем, описываемых обыкновенными дифференциальными уравнениями, не разрешенными относительно производной искомой функции. Получены условия существования решений и их оценки, а также исследован вопрос непрерывной зависимости решений от параметров управляемых систем дифференциальных уравнений со смешанными ограничениями на управление и дополнительным ограничением на производную решения.
накрывающие отображения, метрические пространства, дифференциальные уравнения неявного вида, корректная разрешимость, управляемые системыpublication_info">
Well-posed solvability of control problems for systems of implicit differential equations, pp. 49-64Theorems on solvability, estimates of solutions, and well-posed solvability of equations with covering mappings in the product of metric spaces are formulated. Conditions for the Nemytskii operator to be a covering operator in functional spaces are considered. Statements about covering mappings are applied to studying the controlled systems described by ordinary differential equations unsolved for the derivative. For controlled differential systems with mixed constraints on control and an additional constraint on the solution's derivative, conditions of solvability are received as well as solutions' estimates, the question of continuous dependence of solutions on parameters is investigated.
-
publication_info">
О корректности управляемых систем с запаздыванием, с. 27-29Получены условия непрерывной зависимости решений дифференциальных уравнений от функций управления и запаздывания. При выполнении этих условий можно гарантировать, что неточности в определении параметров не могут оказать большого влияния на управляемую систему.
дифференциальные уравнения с запаздыванием, непрерывная зависимость решений от параметров, управляемые системыpublication_info">
On the correctness of controllable systems with delay, pp. 27-29Conditions have been obtained for continuous dependence of solutions of differential equations on control and delay functions. These conditions guarantee that controllable system will not be strongly influenced by inaccurateness in parameters determination.
-
publication_info">
Оценка решения асимптотически наблюдаемых линейных вполне регулярных дифференциально-алгебраических систем с запаздыванием, с. 329-347В статье для линейных автономных вполне регулярных дифференциально-алгебраических систем с многими соизмеримыми запаздываниями проведено исследование задачи оценки решения по результатам наблюдаемого выхода. Исследуемый класс вполне регулярных дифференциально-алгебраических систем с запаздыванием включает в себя классы линейных систем запаздывающего и нейтрального типов, кроме того, к вполне регулярным системам сводится анализ непрерывно-дискретных систем. Для линейных автономных вполне регулярных дифференциально-алгебраических систем с многими соизмеримыми запаздываниями определено свойство асимптотической наблюдаемости, характеризующееся тем, что все решения, порождающие один и тот же выходной сигнал, неразличимы в будущем. Сформулированы и доказаны условия асимптотической наблюдаемости, выраженные через параметры исходной системы. Для асимптотически наблюдаемых систем предложена процедура оценки решения, реализация которой состоит из следующих действий. Сначала, с использованием наблюдаемого выхода, в соответствие исходной системе ставится линейная автономная неоднородная асимптотически наблюдаемая система запаздывающего типа с неоднородной частью, зависящей он выхода. При этом решение новой системы однозначно определяет решение исходной системы. Затем строится преобразование, приводящее матрицы системы запаздывающего типа к определенному виду. После этого при помощи конечной цепочки наблюдателей осуществляется оценка решения. Результаты представленного исследования применимы к системам, которые не обладают свойством финальной наблюдаемости, что позволяет при моделировании соответствующих объектов реального мира существенно снизить требования к органам наблюдения.
линейная автономная вполне регулярная дифференциально-алгебраическая система, запаздывание, наблюдаемый выходной сигнал, оценка решения, асимптотический наблюдательpublication_info">
Estimation of the solution of asymptotically observable linear completely regular differential-algebraic systems with delay, pp. 329-347In the article, a problem of solution estimation for linear autonomous completely regular differential-algebraic systems with many commensurate delays is investigated. The class of completely regular differential-algebraic systems with delay under study includes the classes of linear systems of delayed and neutral types; in addition, the analysis of continuous-discrete systems is reduced to completely regular systems. For linear autonomous completely regular differential-algebraic systems with many commensurate delays, the property of asymptotic observability is determined, which are characterized by the fact that all solutions generating the same output signal are indistinguishable in the future. Conditions for asymptotic observability expressed in terms of the parameters of the original system are formulated and proved. For asymptotically observable systems, a solution estimation procedure is proposed, the implementation of which consists of the following steps. First, using the observed output, a linear autonomous non-homogeneous asymptotically observable retarded type system with a non-homogeneous part depending on the output is put in correspondence with the original system. The solution of the new system uniquely determines the solution of the original system. Then a transformation is constructed that reduces the matrices of the retarded type system to a certain form. After that, with the help of a finite chain of observers, the solution is evaluated. The results of the presented study are applicable to systems that do not have the property of final observability, which makes it possible to significantly reduce the requirements for observing organs when modeling the corresponding objects of the real world.
-
publication_info">
Об импульсных дифференциальных уравнениях с запаздыванием, с. 44-46Получены условия непрерывной зависимости решений дифференциальных уравнений с запаздыванием от момента и величины импульсного воздействия. Исследование основано на общих утверждениях о разрешимости уравнений с вольтерровыми операторами и непрерывной зависимости их решений от параметров.
импульсные дифференциальные уравнения, дифференциальные уравнения с запаздыванием, непрерывная зависимость решений от параметров уравненийpublication_info">
On impulse differential equations with delay, pp. 44-46Conditions have been obtained for continuous dependence of solutions of differential equations with delay on the moment and quantity of impulse action. This investigation is based on statements about solvability of Volterra operator equations and the continuous dependence of its solutions on parameters.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.