Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'control over spectrum':
Найдено статей: 5
  1. Рассматривается линейная управляемая система с неполной обратной связью с дискретным временем

    x(t+1)=A(t)x(t)+B(t)u(t),   y(t)=C*(t)x(t),   u(t)=U(t)y(t),   t∈Z.

    Исследуется задача управления асимптотическим поведением замкнутой системы

    x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn.                (1)

    Здесь K=C или K=R. Для такой системы вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследовано свойство согласованности системы (1), получены новые необходимые условия и достаточные условия согласованности системы (1), в том числе в стационарном случае. Для стационарной системы вида (1) исследуется задача о глобальном управлении спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы (1) с помощью стационарного управления U к произвольному наперед заданному полиному. Для системы (1) с постоянными коэффициентами специального вида, когда матрица A имеет форму Хессенберга, а в матрицах B и C все строки соответственно до p-й и после p-й (не включая p) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. Ранее было доказано, что обратное утверждение верно для n<4 и неверно для n>5. В настоящей работе доказано, что обратное утверждение верно для n=4.

    We consider a discrete-time linear control system with an incomplete feedback

    x(t+1)=A(t)x(t)+B(t)u(t),   y(t)=C*(t)x(t),   u(t)=U(t)y(t),   t∈Z.

    We study the problem of control over the asymptotic behavior of the closed-loop system

    x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn.               (1)

    where K=C or K=R. For the above system, we introduce the concept of consistency, which is a generalization of the concept of complete controllability onto systems with an incomplete feedback. The focus is on the consistency property of the system (1). We have obtained new necessary conditions and sufficient conditions for the consistency of the above system including the case when the system is time-invariant. For the time-invariant system (1), we study the problem of arbitrary placement of eigenvalue spectrum. The objective is to reduce a characteristic polynomial of a matrix of the stationary system (1) to any prescribed polynomial by means of the time-invariant control U. For the system (1) with constant coefficients of the special form where the matrix A is Hessenberg, the rows of the matrix B before the p-th and the rows of the matrix C after the p-th are equal to zero (not including p), the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. It has been proved that the converse proposition is true for n<4 and false for n>5. In present paper we prove that the converse proposition is true for n=4.

  2. Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).

    We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).

  3. Рассматривается линейная стационарная управляемая система с наблюдателем. Исследуется свойство согласованности этой системы в случае, когда коэффициенты имеют специальный вид, при котором условие согласованности является достаточным условием глобальной управляемости спектра собственных значений замкнутой системы. Установлено, что для систем специального вида необходимое условие согласованности не является достаточным для размерностей больших чем 5. Найдено новое достаточное условие согласованности для таких систем.

    We consider a linear control system with the observer. We investigate the property of consistency of this system in a special case where consistency is the sufficient condition for global controllability over eigenvalue spectrum of closed-loop system. We prove for systems of the special form that the necessary condition of consistency is not sufficient for dimensions big than 5. The new sufficient condition of consistency for such systems is discovered.

  4. Исследуется свойство согласованности линейной управляемой системы с наблюдателем. Получены новые необходимые условия и достаточные условия согласованности. Исследована задача управления спектром в системе с линейной неполной обратной связью; получены необходимые и достаточные условия глобальной управляемости спектра в случае, когда коэффициенты системы имеют специальный вид. Установлена связь между свойством согласованности стационарной системы с наблюдателем и глобальной управляемостью спектра замкнутой системы.

    The property of consistency of a linear control system with the observer is investigated. New necessary conditions and sufficient conditions for consistency have been obtained. The problem of control over spectrum in the system with a linear incomplete feedback is investigated; necessary and sufficient conditions for the global controllability over the spectrum have been obtained in the case where the system coefficients have a special form. Connection is established between the property of consistency of a stationary system with the observer and the global controllability over the spectrum of the closed-loop system.

  5. Для линейной автономной регулярной алгебро-дифференциальной системы с соизмеримыми запаздываниями в управлении решена задача успокоения решения посредством динамического регулятора по типу обратной связи. Основная идея исследования заключается в выборе параметров регулятора так, чтобы замкнутая система стала точечно вырожденной в направлениях, отвечающих фазовым компонентам исходной (разомкнутой) системы. Для этого исходная система преобразуется к двум подсистемам, одна из которых соответствует алгебраической части, а вторая - дифференциальной. Далее для объекта, соответствующего дифференциальной части, строится динамический регулятор, обеспечивающий вырождение соответствующих фазовых компонент. Отличительной чертой работы является возможность обеспечить замкнутой системе наперед заданный конечный спектр, за счет выбора которого замкнутая система может быть сделана асимптотически устойчивой. Изучается возможность такого управления системой в случае отсутствия у нее свойства полной управляемости. В доказательстве основного результата приводится поэтапная процедура построения такого регулятора. Результаты исследования проиллюстрированы конкретным числовым примером.

    For a regular linear autonomous algebraic-differential system with commensurable delays in the controllability, the problem of calming the solution through the feedback dynamic control is solved. The main idea of investigation is to select the controller parameters so that the closed system becomes point-degenerated in directions corresponding to phase components of the source (open) system. For this purpose the source system is converted into two subsystems, one of which corresponds to the algebraic part, and the other - to the differential part. Further, for the object corresponding to the differential part, a dynamic controller is built that provides degeneration of the corresponding phase components. A distinctive feature of this research is the ability to provide a closed system with a predefined finite spectrum, by means of which a closed system can be made asymptotically stable. The possibility of such a control over a system in the absence of its complete controllability is investigated. Within the proof of the main result a gradual procedure for constructing such a controller is presented. The results of the study are illustrated by the specific numerical example.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref