Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'dry friction':
Найдено статей: 4
  1. Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    Целью управления является  движение системы по  множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием  позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности  множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.

    Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения

    A(t,x)F(t,x)+u,

    где u - позиционное импульсное управление, и скользящими режимами системы

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы  более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.

    We consider a controlled mechanical system with dry friction and positional pulse or positional discontinuous control. It can be presented in a form of Lagrange equations of the second kind

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    The goal of the control is the motion of the system (1) in set S={(t,q,dq/dt)∈I×Rn×Rnσ(t,q,dq/dt)=0} (problem of stabilization) or in the neighborhood of set S (approach problem). The first problem is solved with discontinuous positional control of relay type with limited resources, for which a decomposition mode is a stable sliding mode of system (1). In case of insufficiency of resources of discontinuous control the motion of the controlled system in the neighborhood of set S can be implemented under high-frequency impacts on the system in discrete time moments in the pulse-sliding mode, the uniform limit of which (an ideal pulse-sliding mode) is equal to the decomposition mode. The distinctive feature of the assigned problems is dry friction in the system (1), and said dry fiction, generally speaking, can be considered as uncontrollable discontinuous or multivalued perturbations. 

    Main definitions are given in the introduction of the article. In the first section the connection between ideal pulse-sliding modes of inclusion

    A(t,x)F(t,x)+u,

    where u is a positional pulse control, and sliding modes of system

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    with a positional discontinuous control is considered. The second section is devoted to systems of type (1). In the third section we consider set S, which is important in relation to applications and is defined by the vector function σ(t,q,dq/dt)=dq/dt-φ(t,q). For the last case more simple and informative conditions of the existence of sliding modes for a system with discontinuous controls were used. An example was considered in conclusion.

  2. В статье рассмотрены основные принципы постановок задач в механике твердого тела при наличии связей (с сухим трением и без). Основное внимание уделено предыстории начальных условий задачи, которая должна быть корректно определена таким образом, чтобы не требовалось введения дополнительных гипотез и допущений, выводящих исследование за рамки динамики твердого тела без ударов. Тогда динамика движения (и/или равновесия) твердых тел может быть описана однозначно и без каких-либо парадоксальных ситуаций (парадоксов Пэнлеве). Эта методика иллюстрируется на трех известных задачах механики: опирание твердого тела на одну точку при наличии сухого трения, движение стержня с ползунами в направляющих с сухим трением, опирание твердого тела на две точки с сухим трением («скамейка»).

    We consider basic concepts for setting the problems of motion of a rigid body with constraints (with and without dry friction). The main accent is placed upon the prehistory of initial condition of a problems, which should be formulated in a correct manner which would not require introducing additional hypothesis and assumptions which make one to leave the frames of the rigid body dynamics without impacts. With such correct formulation, the dynamics of motion (or equilibrium) of rigid bodies can be described without occurence of some paradoxic situations (Painlev'e paradoxes). The presented methodology is illustrated by three well-known problems in mechanics: 1) rigid body with a single contact point with a surface in the presence of dry friction, 2) sliding bar in the sliding ways with dry friction, 3) rigid body with two point contact in the presence of dry friction («bench»).

  3. Рассматривается задача о скольжении однородного прямого цилиндра произвольной формы (шайбы) по горизонтальной плоскости под действием сил сухого трения. Пятно контакта цилиндра с плоскостью совпадает с его основанием. Одной из центральных гипотез в работе является выбор математической модели взаимодействия малого элемента поверхности шайбы с плоскостью. Предполагается, что данное явление описывается законом сухого трения Амонтона–Кулона. В данной работе основное внимание уделено качественному анализу уравнений движения системы, который позволит описать динамику при малых значениях кинетической энергии системы (финальную динамику). Сформулированы и доказаны качественные свойства динамики произвольных шайб. Приведены примеры, показывающие различие финальной динамики шайб, опирающихся на шероховатую плоскость круглым основанием, центрально-симметричным и произвольной формы.

    Burlakov D.S., Seslavina A.A.
    On free movement of puck on horizontal plane, pp. 125-139

    We consider the problem of a homogeneous direct cylinder of an arbitrary form (a puck) sliding on a horizontal surface under the action of dry friction forces. The surface contact spot of the cylinder coincides with its base. One of the central hypotheses in the work is the choice of a mathematical model of interaction between a small surface element of a puck and a plane. It is assumed, that the current effect is described by the Amonton–Coulomb’s law of friction. In the present work the basic attention is given to the qualitative analysis of the equations of motion for systems, the one which allow to describe dynamics at small values of the system’s kinetic energy (final dynamics). Qualitative properties of dynamics for arbitrary pucks are formulated and proved. We present examples illustrating the difference in final dynamics for pucks with round, centrosymmetrical and arbitrary bases on a rough surface.

  4. Рассмотрена динамика вращения твердого тела (ротатора) вокруг неглавной оси Oz, проходящей через его центр масс, с учетом диссипативных моментов: сухого трения Mfr, возникающего в опорах из-за поперечных динамических реакций, и квадратичного по угловой скорости ω аэродинамического сопротивления MR=-c|ω|ω. Показано, что уравнение динамики и вытекающие из него кинетики вращения тела качественно различны в общем и частном случаях инерционных и диссипативных параметров: осевого момента инерции Jzz, коэффициентов c и α=Mfr/√ε24 (ε - угловое ускорение). В частном случае равенства Jzz=c=α обнаружено отсутствие физически возможного решения для вращения по инерции в рамках динамики абсолютно твердого тела. Парадокс разрешается через нормализующее причинно-следственные связи введение запаздывающих величин ε(t-τ) и ω(t-τ), определяющих в согласии с принципом Даламбера поперечные реакции в опорах оси Mx,y(t-τ) и пару Mfr(t-τ). Последняя же определяла темп потери кинетического момента dKz(t)/dt в момент времени t. Кинетика вращения при этом имеет импульсивный характер так называемого фрикционно-аэродинамического удара. Также путем численного интегрирования продемонстрирована необычная угловая кинетика φ(t) затухающих колебаний ротатора под действием упругого момента Me=-κφ, характеризующаяся наличием двух фаз: кратковременного стартового участка, зависящего от начальных условий, затем резко переходящего в фазу почти синусоидальных колебаний с медленно убывающей амплитудой.

    The article studies the rotational dynamics of a rigid body (rotator) around the central but non-principal axis Oz passing through its center of mass under the action of dry frictional torque Mfr=α√ε24 caused by inertia forces in the axis's supports and the drag momentum MR=-c|ω|ω quadratic in angular speed ω. It has been shown that the dynamical equations and the equations of the kinetics of the body's rotation, which follow from the dynamical equations, are qualitatively different in general and particular cases of the inertial and dissipative parameters involved: the axial moment of inertia Jzz and the coefficients c and α=Mfr/√ε24 (where ε is the angular acceleration). It is found that in the particular case of the equality Jzz=c=α a physical feasible solution for the inertial rotation within the dynamics of a perfectly rigid body is absent. The paradox is resolved by the introduction of the lagged angular velocity ω(t-τ) and acceleration ε(t-τ) as factors defining due to D'Alembert principle the supports' transversal reactions Mx,y(t-τ) and hence the value of Mfr(t-τ). The last one determines the loss rate of kinetic momentum, i.e. the dKz(t)/dt at time t. The rotational kinetics had a type of frictional-aerodynamic impact. Also, by numerical integration, there was shown the unusual angular kinetics φ(t) of the damping oscillations of the rotator under the action of the elastic torque Me=-κφ. The kinetics was characterized by the presence of two phases: the short starting part strongly depending on initial conditions followed by the phase of almost sine wave oscillations with extremely slow damping.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref