Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пространство правильных функций и дифференциальное уравнение с обобщенными функциями в коэффициентах, с. 3-18Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.
A function defined on an open (finite, semi-finite, infinite) interval is called regulated if it has finite one-sided limits at each point of its domain. In the present paper we study spaces of regulated functions, in particular, their dense subsets. Our motivation is applications to differential equations. Namely, we consider the Cauchy problem for a scalar linear differential equation with coefficients, which are derivatives of regulated functions. We immerse the Cauchy problem into the space of the Colombeau generalized functions. If the coefficients are derivatives of step functions, we find explicit solution R(φμ,t) of the Cauchy problem (in terms of representatives); its limit as μ→+0 is defined to be the solution of the original problem. In this way, we obtain a densely defined (on the space of regulated functions) operator T, which associates the solution to a Cauchy problem with this problem. Next, using a well-known topological result on a continuous extension, we extend the operator T to the operator T defined on the entire space of regulated functions. We have given the explicit representation of solution of the Cauchy problem for the inhomogeneous differential equation. Illustrative examples are also offered.
-
В первой части определено и исследовано нелинейное метрическое пространство $\langle\overline{\rm G}^\infty[a,b],d\rangle$, состоящее из функций, действующих из отрезка $[a,b]$ в расширенную числовую ось $\overline{\mathbb R}$. По определению предполагается, что для любых $x\in\overline{\rm G}^\infty[a,b]$ и $t\in(a,b)$ существуют предельные числа $x(t-0),x(t+0)\in\overline{\mathbb R}$ (и числа $x(a+0),x(b-0)\in\overline{\mathbb R}$). Доказана полнота пространства. Оно является замыканием пространства ступенчатых функций в метрике $d$. Во второй части работы определено и исследовано нелинейное пространство ${\rm RL}[a,b]$. Всякая кусочно-гладкая функция, определенная на $[a,b]$, содержится в ${\rm RL}[a,b]$. Всякая функция $x\in{\rm RL}[a,b]$ имеет ограниченное изменение. Для нее определены все односторонние производные (со значениями в метрическом пространстве $\langle\overline{\mathbb R},\varrho\rangle$). Функция левосторонних производных непрерывна слева, а функция правосторонних производных непрерывна справа. Обе функции, доопределенные на весь отрезок $[a,b]$, принадлежат пространству $\overline{\rm G}^\infty[a,b]$. В заключительной части работы определены и исследованы два подпространства пространства ${\rm RL}[a,b]$. В подпространствах сформулированы и обсуждены перспективные постановки для простейших вариационных задач.
In the first part of the paper, the nonlinear metric space $\langle\overline{\rm G}^\infty[a,b],d\rangle$ is defined and studied. It consists of functions defined on the interval $[a,b]$ and taking the values in the extended numeric axis $\overline{\mathbb R}$. For any $x\in\overline{\rm G}^\infty[a,b]$ and $t\in(a,b)$ there are limit numbers $x(t-0),x(t+0) \in\overline{\mathbb R}$ (and numbers $x(a+0),x(b-0)\in\overline{\mathbb R}$). The completeness of the space is proved. It is the closure of the space of step functions in the metric $d$. In the second part of the work, the nonlinear space ${\rm RL}[a,b]$ is defined and studied. Every piecewise smooth function defined on $[a,b]$ is contained in ${\rm RL}[a,b]$. Every function $x\in{\rm RL}[a,b]$ has bounded variation. All one-sided derivatives (with values in the metric space $\langle\overline{\mathbb R},\varrho\rangle$) are defined for it. The function of left-hand derivatives is continuous on the left, and the function of right-hand derivatives is continuous on the right. Both functions extended to the entire interval $[a,b]$ belong to the space $\overline{\rm G}^\infty[a,b]$. In the final part of the paper, two subspaces of the space ${\rm RL}[a,b]$ are defined and studied. In subspaces, promising formulations for the simplest variational problems are stated and discussed.
-
О нелокальном возмущении задачи на собственные значения оператора дифференцирования на отрезке, с. 186-193Построен характеристический многочлен спектральной задачи дифференциального уравнения первого порядка на отрезке со спектральным параметром в краевом условии с интегральным возмущением, которое является целой аналитической функцией от спектрального параметра. На основе формулы характеристического многочлена доказаны выводы об асимптотике спектра возмущенной спектральной задачи.
оператор дифференцирования, краевые условия, интегральное возмущение, функция ограниченной вариации, характеристический многочлен, целые аналитические функции, нули целой функции, собственные значений, асимптотика
On nonlocal perturbation of the problem on eigenvalues of differentiation operator on a segment, pp. 186-193This work is devoted to the construction of a characteristic polynomial of the spectral problem of a first-order differential equation on an interval with a spectral parameter in a boundary value condition with integral perturbation which is an entire analytic function of the spectral parameter. Based on the characteristic polynomial formula, conclusions about the asymptotics of the spectrum of the perturbed spectral problem are established.
-
Рассматривается нелинейная механическая система, динамика которой описывается векторным дифференциальным уравнением типа Льенара. Предполагается, что коэффициенты данного уравнения могут переключаться с одного набора постоянных значений на другой, причем общее количество этих наборов, вообще говоря, бесконечное. Таким образом, для задания коэффициентов уравнения используются кусочно-постоянные функции с бесконечным числом точек разрыва на всей временной оси. Предлагается способ построения разрывной функции Ляпунова, с помощью которой исследуются достаточные условия асимптотической устойчивости нулевого положения равновесия изучаемого уравнения. Полученные результаты обобщаются на случай нестационарного уравнения Льенара с разрывными коэффициентами более общего вида. В качестве вспомогательного результата работы разрабатываются методы анализа вопроса знакоопределенности и подходы к получению оценок для алгебраических выражений, представляющих собой сумму слагаемых степенного вида с нестационарными коэффициентами. Ключевой особенностью исследования является отсутствие предположений об ограниченности указанных нестационарных коэффициентов или об их отделенности от нуля. Приводятся некоторые примеры, иллюстрирующие установленные результаты.
нелинейные механические системы, разрывные коэффициенты, асимптотическая устойчивость, функции ЛяпуноваA nonlinear mechanical system, whose dynamics is described by a vector ordinary differential equation of the Lienard type, is considered. It is assumed that the coefficients of the equation can switch from one set of constant values to another, and the total number of these sets is, in general, infinite. Thus, piecewise constant functions with infinite number of break points on the entire time axis, are used to set the coefficients of the equation. A method for constructing a discontinuous Lyapunov function is proposed, which is applied to obtain sufficient conditions of the asymptotic stability of the zero equilibrium position of the equation studied. The results found are generalized to the case of a nonstationary Lienard equation with discontinuous coefficients of a more general form. As an auxiliary result of the work, some methods for analyzing the question of sign-definiteness and approaches to obtaining estimates for algebraic expressions, that represent the sum of power-type terms with non-stationary coefficients, are developed. The key feature of the study is the absence of assumptions about the boundedness of these non-stationary coefficients or their separateness from zero. Some examples are given to illustrate the established results.
-
Исследуется асимптотическое поведение решения задачи Дирихле для бисингулярно возмущенного эллиптического уравнения второго порядка в кольце с двумя независимыми переменными. Для построения асимптотического разложения решения задачи применяется модифицированная схема метода пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Предлагаемый метод отличается от метода согласования тем, что нарастающие особенности внешнего разложения фактически из него убираются и с помощью вспомогательного асимптотического ряда полностью вносятся во внутренние разложения, а от классического метода пограничных функций здесь пограничные функции убывают степенным характером, а не экспоненциально. Асимптотическое разложение решения представляет собой ряд Пюизё. Полученное асимптотическое разложение решения задачи Дирихле обосновано принципом максимума.
формальное асимптотическое разложение, задача Дирихле, функции Эйри, ряд Пюизё, малый параметр, метод погранфункций, бисингулярное возмущение
Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring, pp. 517-525The paper refers to the asymptotic behavior of the Dirichlet problem solution for a bisingular perturbed elliptic second-order equation with two independent variables in the ring. To construct the asymptotic expansion of the solution the authors apply the modified scheme of the method of boundary functions by Vishik-Lyusternik-Vasil'eva-Imanaliev. The proposed method differs from the matching method by the fact that growing features of the outer expansion are in fact removed from it and with the help of an auxiliary asymptotic series are placed entirely in the internal expansion, and from the classical method of boundary functions by the fact that boundary functions have power-law decrease, not exponential. An asymptotic expansion of the solution is a series of Puiseux. The resulting asymptotic expansion of the Dirichlet problem solution is justified by the maximum principle.
-
Вопрос о возможности голоморфного продолжения в область функций, заданных на всей границе этой области, достаточно хорошо изучен. Представляет интерес задача описания функций, заданных на части границы, которые могут быть голоморфно продолжены в фиксированную область. В статье переформулируем рассматриваемую задачу: При выполнении каких условий можно голоморфно продолжить в матричный шар, функции заданных на части остова? Описаны области, в которые голоморфно продолжается интеграл типа Бохнера–Хуа Ло-кена для матричного шара. Получен основной результат нашей работы — критерий голоморфного продолжения в матричной шар функций, заданных на части остова матричного шара. Кратко излагаются доказательства нескольких основных результатов. Приводятся некоторые недавние достижения. Сформулированы нерешенные задачи. Результаты, полученные в этой статье, являются общими случаями результатов Л.А. Айзенберга, А.М. Кытманова, Г. Худайберганова.
матричной шар, граница Шилова, интеграл Бохнера–Хуа Ло-кена, пространство Харди, голоморфное продолжение, ортонормальная система
Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton, pp. 296-310The question of the possibility of holomorphic continuation into some domain of functions defined on the entire boundary of this domain has been well studied. The problem of describing functions defined on a part of the boundary that can be extended holomorphically into a fixed domain is attracting more interest. In this article, we reformulate the problem under consideration: Under what conditions can we extend holomorphically to a matrix ball the functions given on a part of its skeleton? We describe the domains into which the integral of the Bochner—Hua Luogeng type for a matrix ball can be extended holomorphically. As the main result, we present the criterion of holomorphic continuation into a matrix ball of functions defined on a part of the skeleton of this matrix ball. The proofs of several results are briefly presented. Some recent advances are highlighted. The results obtained in this article generalize the results of L.A. Aizenberg, A.M. Kytmanov and G. Khudayberganov.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.