Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'equations of motion':
Найдено статей: 59
  1. Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.

    We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov-Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov-Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle-node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle-foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.

  2. В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.

    In the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.

  3. Целью работы является получение математической модели движения составной упругой системы. Поиск собственных форм и частот предлагается проводить путем разложения колебаний по формам неподвижных элементов. Это позволяет преобразовать уравнения движения в частных производных в обыкновенные дифференциальные уравнения. Проведено моделирование движения космического аппарата, в состав которого входят упругие элементы большой протяженности (панели солнечных батарей).

    Borisov M.V., Avramenko А.А.
    Modelling of motion of the spacecraft with elastic elements, pp. 17-28

    The purpose of the article is receiption of mathematical model of motion of the complex elastic system. The normal modes and frequencies are searched by decomposition of vibrations on the modes of stationary elements of the system. It allows one to transform partial differential equations of motion in ordinary differential equations. The motion of a space craft which consists of elastic large size elements (solar panels) is modeled.

  4. Рассматриваются две задачи нелинейного гарантированного оценивания фазовых состояний динамических систем. Предполагается, что неизвестные измеримые по $t$ возмущения линейно входят в уравнение движения и аддитивно — в уравнения измерения. Эти возмущения стеснены нелинейными интегральными функционалами, один из которых является аналогом функционала обобщенной работы. Исследуемая задача состоит в построении информационных множеств по данным измерения, содержащих истинное положение траектории. Используется подход динамического программирования. Если для первого функционала требуется решить нелинейное уравнение в частных производных первого порядка, что не всегда возможно, то для функционала обобщенной работы достаточно найти решение линейного уравнения Ляпунова первого порядка, что существенно упрощает задачу. Тем не менее, даже в этом случае приходится налагать дополнительные условия на параметры системы для того, чтобы траектория системы, соответствующая наблюдаемому сигналу, существовала. Если уравнение движения линейно по фазовой переменной, то многие предположения выполняются автоматически. Для этого случая обсуждается вопрос о взаимной оценке сверху и снизу информационных множеств по включению для разных функционалов. В заключение рассмотрен наиболее прозрачный линейно-квадратичный случай. Изложение иллюстрируется примерами.

    Two problems of nonlinear guaranteed estimation for states of dynamical systems are considered. It is supposed that unknown measurable in $t$ disturbances are linearly included in the equation of motion and are additive in the measurement equations. These disturbances are constrained by nonlinear integral functionals, one of which is analog of functional of the generalized work. The studied problem consists in creation of the information sets according to measurement data containing the true position of the trajectory. The dynamic programming approach is used. If the first functional requires solving a nonlinear equation in partial derivatives of the first order which is not always possible, then for functional of the generalized work it is enough to find a solution of the linear Lyapunov equation of the first order that significantly simplifies the problem. Nevertheless, even in this case it is necessary to impose additional conditions on the system parameters in order for the system trajectory of the observed signal to exist. If the motion equation is linear in state variable, then many assumptions are carried out automatically. For this case the issue of mutual approximation of information sets via inclusion for different functionals is discussed. In conclusion, the most transparent linear quadratic case is considered. The statement is illustrated by examples.

  5. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

    We consider a system which consists of a circular cylinder subject to gravity interacting with a point vortex in a perfect fluid. In contrast to previous works, in this paper the circulation about the cylinder is assumed to be zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. Using autonomous integral we reduce the order of the system by one degree of freedom in a case of zero circulation which early was not considered. Unlike nonzero circulation in the absence of point vortices when the cylinder moves inside a certain horizontal stripe it is shown that in the presence of vortices and with circulation equal to zero a vertical coordinate of the cylinder is unbounded decreasing. We then focus on the numerical study of dynamics of our system. In a case of zero circulation trajectories are noncompact. The different kinds of the scattering function of the vortex by cylinder were obtained. The form of these functions argues to chaotic behavior of the scattering which means that an additional analytical integral is absent.

  6. Караваев А.С., Копысов С.П., Сармакеева А.С.
    Моделирование динамики произвольных тел методом дискретных элементов, с. 473-482

    Рассматриваются постановка и тестовые решения задачи динамического взаимодействия твердых тел произвольной формы в рамках дискретно-элементного моделирования. При дискретизации используется описание тел произвольной формы, составленных из элементов-сфер, жестко связанных между собой. Агломераты строились на нескольких сетках с разной размерностью, что позволило оценить влияние параметров при построении агломератов сфер и гладкости получаемой поверхности. Представлена система уравнений движения агломерата сфер относительно глобальной системы координат, интегрирование которой выполняется на модифицированной схеме Верле. Силы взаимодействия между сферами определяются на основе контактной модели Герца-Миндлина с учетом вязкого демпфирования. Тестирование метода проводилось на задаче взаимодействия двух сфер. Вычислялись траектории движения сфер, представленные агломератом сферических частиц. Полученные результаты сравнивались со случаем движения и взаимодействия сфер в одночастичном приближении.

    Karavaev A.S., Kopysov S.P., Sarmakeeva A.S.
    A discrete element method for dynamic simulation of arbitrary bodies, pp. 473-482

    The paper deals with the statement of a problem of dynamic interaction of arbitrary solid bodies and its test solutions in the context of discrete element modeling. For discretization we use description of bodies with arbitrary shapes, composed of rigidly bound spheres. The clumps were built with different characteristics, which allowed to estimate their influence on the process of clump construction and the smoothness of obtained surface. A system of equations of motion relative to global axes for a clump of spheres is presented. The forces of interaction between the spheres are determined based on the Hertz-Mindlin contact model with due account for viscous damping. A problem of interaction of two spheres was chosen as a test case. Spheres' trajectories composed of clumps of spheres were calculated. The results were compared with the results for the case of motion and interaction of spheres in one-particle approximation.

  7. В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.

    In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree - the Adler-van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie-Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank 0 and 1 of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.

  8. Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.

    We study the problem of small motions of an ideal stratified fluid with a free surface, partially covered with elastic ice. Elastic ice is modeled by an elastic plate. The problem is studied on the basis of an approach connected with application of the so-called operator matrices theory. To this end we introduce Hilbert spaces and some of their subspaces as well as auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this basis, we find sufficient conditions for the existence of a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the hydrosystem.

  9. Для современной геометрии важное значение имеет изучение геометрий максимальной подвижности. Максимальная подвижность для $n$-мерной геометрии, задаваемой функцией $f$ пары точек означает существование $n(n+1)/2$-мерной группы преобразований, оставляющей эту функцию инвариантной. Известно много геометрий максимальной подвижности (геометрия Евклида, симплектическая, Лобачевского и т.д.), но полной классификации таких геометрий нет. В данной статье методом вложения решается одна из таких классификационных задач. Суть этого метода состоит в следующем: по известной функции пары точек $g$ трехмерной геометрии находим все невырожденные функции $f$ пары точек четырехмерных геометрий, являющиеся инвариантами группы Ли преобразований размерности 10. В этой статье $g$ - это невырожденные функции пары точек двух гельмгольцевых трехмерных геометрий: $$g = 2\ln(x_i-x_j) + \dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j,$$ $$\ln[(x_i-x_j)^2+(y_i-y_j)^2]+ 2\gamma\,\text{arctg}\dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j.$$ Данные геометрии локально максимально подвижны, то есть их группы движений шестимерны. Задача, решаемая в этой работе, сводится к решению аналитическими методами специальных функциональных уравнений, решения которых ищутся в виде рядов Тейлора. Для перебора различных вариантов применяется пакет математических программ Maple 15. В результате получаются только вырожденные функции пары точек.

    For modern geometry, the study of maximum mobility geometries is important. The maximum mobility for $n$-dimensional geometry given by the function $f$ of a pair of points means the existence of an $n(n+1)/2$-dimensional transformation group, which leaves this function invariant. Many geometries of maximum mobility are known (Euclidean, symplectic, Lobachevsky, etc.), but there is no complete classification of such geometries. In this article, the method of embedding solves one of these classification problems. The essence of this method is as follows: from the function of a pair of points $ g $ of three-dimensional geometry, we find all non-degenerate functions $f$ of a pair of points of four-dimensional geometries that are invariants of the Lie group of transformations of dimension 10. In this article, $g$ are non-degenerate functions of a pair of points of two Helmholtz three-dimensional geometries: $$g = 2\ln(x_i-x_j) + \dfrac{y_i-y_j}{x_i-x_j} + 2z_i + 2z_j, $$ $$\ln [(x_i-x_j)^2 + (y_i-y_j)^2] + 2\gamma\,\text{arctg}\dfrac{y_i-y_j}{x_i-x_j} + 2z_i + 2z_j. $$ These geometries are locally maximally mobile, that is, their groups of motions are six-dimensional. The problem solved in this work is reduced to solving special functional equations by analytical methods, the solutions of which are sought in the form of Taylor series. For searching various options, the math software package Maple 15 is used. As a result, only degenerate functions of a pair of points are obtained.

  10. Рассмотрено движение кругового цилиндра в идеальной жидкости в поле неподвижного источника. Показано, что при постоянной интенсивности источника система обладает интегралом момента и интегралом энергии. Указаны условия, при которых уравнения движения, редуцированные на уровень интеграла момента, допускают неустойчивую неподвижную точку. Данная неподвижная точка соответствует круговому движению цилиндра вокруг источника. Построена обратная связь, обеспечивающая стабилизацию указанной неподвижной точки за счет изменения интенсивности источника.

    The motion of a circular cylinder in an ideal fluid in the field of a fixed source is considered. It is shown that, when the source has constant strength, the system possesses a momentum integral and an energy integral. Conditions are found under which the equations of motion reduced to the level set of the momentum integral admit an unstable fixed point. This fixed point corresponds to circular motion of the cylinder about the source. A feedback is constructed which ensures stabilization of the above-mentioned fixed point by changing the strength of the source.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref