Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'excitability':
Найдено статей: 6
  1. Башкирцева И.А., Насырова В.М., Ряшко Л.Б., Цветков И.Н.
    Индуцированная шумом перемежаемость и переход к хаосу в нейронной модели Рулькова, с. 453-462

    В статье исследуется дискретная модель нейрона, предложенная Рульковым. В детерминированном варианте эта система моделирует различные режимы нейронной активности, такие как покой, тонический и хаотический спайкинг. В присутствии случайных возмущений в системе может наблюдаться еще один важный режим - берстинг, характеризующийся перемежаемостью участков покоя и возбуждения. В работе исследуются вероятностные механизмы индуцированных шумом переходов от покоя к берстингу в зоне касательной бифуркации. Показано, что такие переходы могут сопровождаться трансформацией динамики системы из регулярной в хаотическую. Для анализа этих бифуркационных явлений используются техника функций стохастической чувствительности и метод доверительных интервалов.

    Bashkirtseva I.A., Nasyrova V.M., Ryashko L.B., Tsvetkov I.N.
    Noise-induced intermittency and transition to chaos in the neuron Rulkov model, pp. 453-462

    A discrete neuron model proposed by Rulkov is studied. In the deterministic version, this system simulates different modes of neural activity, such as quiescence, tonic and chaotic spiking. In the presence of random disturbances, another important mode of bursting characterized by the alternation of quiescence and excitement regimes can be observed. We study the probabilistic mechanisms of noise-induced transitions from quiescence to bursting in the zone of the tangent bifurcation. It is shown that such transitions are accompanied by a transformation of the system dynamics from regular to chaotic. For the analysis of these bifurcation phenomena, the stochastic sensitivity functions technique and method of confidence intervals are used.

  2. В работе изучается влияние шума на модель ферментативной реакции Голдбетера, описывающую механизм колебательного синтеза циклического аденозинмонофосфата в клетке. Показано, что модель отличается высокой чувствительностью к вариациям параметров и начальных условий. Демонстрируется и исследуется явление стохастической возбудимости в зоне устойчивого равновесия. Показано, что воздействие шума приводит к резкому переходу от малоамплитудных стохастических осцилляций к спайковым колебаниям большой амплитуды. Для параметрического анализа этого явления используются техника функций стохастической чувствительности и метод доверительных эллипсов. Изучена зависимость критического значения интенсивности шума, при котором начинается генерация большеамплитудных колебаний, от близости управляющего параметра к точке бифуркации. Для детального анализа частотных свойств стохастических колебаний проведен статистический анализ межспайковых интервалов и обнаружено явление когерентного резонанса.

    We study the influence of noise on the Goldbeter model of the enzymatic reaction, which describes the mechanism of oscillatory synthesis of cyclic adenosine monophosphate in a cell. It is shown that the model is highly sensitive to variations of parameters and initial conditions. The phenomenon of stochastic excitability in a stable equilibrium zone is demonstrated and studied. We show that the noise results in a sharp transition from low-amplitude stochastic oscillations to large-amplitude spike oscillations. For the parametric analysis of this phenomenon, the technique of stochastic sensitivity functions and the method of confidence ellipses are used. We study how the critical value of the noise intensity corresponding to the generation of large-amplitude oscillations depends on the proximity of a control parameter to a bifurcation point. For a detailed analysis of the frequency properties of stochastic oscillations, a statistical analysis of interspike intervals is carried out, and a phenomenon of coherent resonance is found.

  3. В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.

    The influence of colored noise on the equilibrium regimes of nonlinear dynamical systems is investigated. To study the response of the system to small perturbations, we use an asymptotic approach that develops the stochastic sensitivity function technique. The stochastic sensitivity of equilibrium in a general multidimensional dynamical system is defined by some matrix. For this stochastic sensitivity matrix, we obtain a matrix algebraic equation. An exact solution of this equation is given for an important class of nonlinear oscillators with perturbations in the form of colored noises. This theory is applied to the parametric study of the response of the electronic generator with hard excitation to colored noises with various correlation times. The dependence of the dispersion of random states on the characteristic correlation time is investigated. It is shown that this dependence can be nonmonotonic and have maxima corresponding to the resonances. The paper discusses the probabilistic mechanism of the stochastic generation of large-amplitude oscillations caused by color noise.

  4. В работе исследуется стохастическая динамика двумерной модели Хиндмарш-Розе. В детерминированной модели Хиндмарш-Розе возможны параметрические зоны сосуществования различных устойчивых аттракторов - равновесий и предельных циклов. Появление колебаний больших амплитуд при воздействии случайных возмущений на систему в этих зонах объясняется наличием предельного цикла. Однако стохастическая генерация осцилляций больших амплитуд возможна и в параметрической зоне, где имеется лишь одно устойчивое равновесие. В данной статье рассматривается этот случай. При малых шумах случайные состояния концентрируются вблизи устойчивого равновесия. При увеличении интенсивности шума траектории уходят далеко от равновесия, совершая колебательные движения больших амплитуд в окрестности неустойчивого равновесия. Это явление подтверждается изменением плотности распределения случайных траекторий. Проводится анализ этого эффекта с помощью техники функций стохастической чувствительности. Предлагается метод оценки критических значений интенсивности шума.

    We study the stochastic dynamics of the two-dimensional Hindmarsh-Rose model. In the deterministic Hindmarsh-Rose model the parametric zones of coexistence of different stable attractors (equilibria and limit cycles) are possible. The emergence of high amplitude oscillations under the influence of random disturbances on the system in these zones is due to the presence of a limit cycle. However, the stochastic generation of high amplitude oscillations is possible in a parametric zone where the deterministic system has the only stable equilibrium. This article discusses this case. For a sufficiently low noise intensity values, random states concentrate near the stable equilibrium. With the increasing of the noise intensity, trajectories go far from the equilibrium making high amplitude oscillations in the neighborhood of the unstable equilibrium. This phenomenon is confirmed by changing of the probability distribution of random trajectories. This effect is analyzed using the stochastic sensitivity function technique. A method of estimation of critical values for noise intensity is proposed.

  5. В данной работе получены уравнения движения пары вихрей и кругового профиля с параметрическим возбуждением, которое возникает за счет периодического движения материальной точки. Подобные плоские задачи, с одной стороны, носят модельный характер и не могут быть использованы для точного количественного описания реальных траекторий системы. С другой стороны, во многих случаях такие модели позволяют получить достаточно точную качественную картину динамики и, вследствие простоты, данные 2D модели позволяют оценить влияние различных параметров. Описаны относительные положения равновесия, обобщающие решения Феппля и коллинеарные конфигурации, в отсутствии движения материальной точки. Показано, что в окрестности относительных равновесий в случае периодического движения центра масс профиля образуется стохастический слой.

    In this paper we obtain equations of motion for a vortex pair and a circular foil with parametric excitation due to the periodic motion of a material point. Undoubtedly, such problems are, on the one hand, model problems and cannot be used for an exact quantitative description of real trajectories of the system. On the other hand, in many cases such 2D models provide a sufficiently accurate qualitative picture of the dynamics and, due to their simplicity, an estimate of the influence of different parameters. We describe relative equilibria that generalize Föppl solutions and collinear configurations when the material point does not move. We show that a stochastic layer forms in the neighborhood of relative equilibria in the case of periodic motion of the foil's center of mass.

  6. Обсуждается вопрос о возбуждении параметрических колебаний защемленной одним концом консольной балки (цилиндрической трубки), внутренняя полость которой заполнена идеальной несжимаемой жидкостью. Решаются гидродинамическая задача о взаимодействии стенок балки и жидкости и задача о параметрических поперечных колебаниях консоли.

    In this paper we discuss a question of exciting parametric oscillations of the balk with one end block up (cylindrical tube), internal value of which is filled with ideal incompressible liquid. First task is a hydrodynamic task about interaction of the walls of console and liquid and second task is about parametric cross oscillations of console.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref