Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Граф частичных порядков, с. 3-12Любое бинарное отношение σ⊆X (где X - произвольное множество) порождает на множестве X2 характеристическую функцию: если (x,y)∈σ, то σ(x,y)=1, а иначе σ(x,y)=0. В терминах характеристических функций на множестве всех бинарных отношений множества X вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если X - конечное множество, то эта алгебраическая система - граф («граф графов»).
Показано, что если σ и τ - смежные отношения, то σ является частичным порядком тогда и только тогда, когда τ является частичным порядком. Исследованы некоторые особенности строения графа G(X) частичных порядков. В частности, если X состоит из n элементов, а T0(n) - это число помеченных T0-топологий, определенных на множестве X, то количество вершин в графе G(X) равно T0(n), а количество компонент связности равно T0(n-1).
Для всякого отношения частичного порядка σ определяется понятие его опорного множества S(σ), являющегося некоторым подмножеством множества X. Если X - конечное множество, а частичные порядки σ и τ принадлежат одной и той же компоненте связности графа G(X), то равенство S(σ)=S(τ) имеет место тогда и только тогда, когда σ=τ. Показано, что в каждой компоненте связности графа G(X) совокупность опорных множеств ее элементов является специфическим частично упорядоченным множеством относительно естественного отношения включения множеств.
The graph of partial orders, pp. 3-12Any binary relation σ⊆X (where X is an arbitrary set) generates a characteristic function on the set X2: if (x,y)∈σ, then σ(x,y)=1, otherwise σ(x,y)=0. In terms of characteristic functions on the set of all binary relations of the set X we introduced the concept of a binary reflexive relation of adjacency and determined the algebraic system consisting of all binary relations of a set and of all unordered pairs of various adjacent binary relations. If X is finite set then this algebraic system is a graph (“a graph of graphs”).
It is shown that if σ and τ are adjacent relations then σ is a partial order if and only if τ is a partial order. We investigated some features of the structure of the graph G(X) of partial orders. In particular, if X consists of n elements, and T0(n) is the number of labeled T0-topologies defined on the set X, then the number of vertices in a graph G(X) is T0(n), and the number of connected components is T0(n-1).
For any partial order σ there is defined the notion of its support set S(σ), which is some subset of X. If X is finite set, and partial orders σ and τ belong to the same connected component of the graph G(X), then the equality S(σ)=S(τ) holds if and only if σ=τ. It is shown that in each connected component of the graph G(X) the union of support sets of its elements is a specific partially ordered set with respect to natural inclusion relation of sets.
-
Любое бинарное отношение $\sigma\subseteq X^2$ (где $X$ - произвольное множество) порождает на множестве $X^2$ характеристическую функцию: если $(x,y)\in\sigma,$ то $\sigma(x,y)=1,$ а иначе $\sigma(x,y)=0.$ В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф («граф графов»).
Показано, что если $\sigma$ и $\tau$ - смежные отношения, то $\sigma$ является рефлексивно-транзитивным отношением тогда и только тогда, когда $\tau$ является рефлексивно-транзитивным отношением. Исследованы некоторые особенности строения графа $G(X)$ рефлексивно-транзитивных отношений. В частности, если $X$ состоит из $n$ элементов, а $T_0(n)$ - это число помеченных $T_0$-топологий, определенных на множестве $X,$ то количество компонент связности равно $\sum_{m=1}^n S(n,m) T_0(m-1),$ где $S(n,m)$ - числа Стирлинга 2-го рода. $($Хорошо известно, что количество вершин в графе $G(X)$ равно $\sum_{m=1}^nS(n,m) T_0(m).)$Any binary relation $\sigma\subseteq X^2$ (where $X$ is an arbitrary set) generates on the set $X^2$ a characteristic function: if $(x,y)\in\sigma,$ then $\sigma(x,y)=1,$ otherwise $\sigma(x,y)=0.$ In terms of characteristic functions we introduce on the set of all binary relations of the set $X$ the concept of a binary reflexive relation of adjacency and determine an algebraic system consisting of all binary relations of the set and of all unordered pairs of various adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs’’).
It is shown that if $\sigma$ and $\tau$ are adjacent relations then $\sigma$ is a reflexive-transitive relation if and only if $\tau$ is a reflexive-transitive relation. Several structure features of the graph $G(X)$ of reflexive-transitive relations are investigated. In particular, if $X$ consists of $n$ elements, and $T_0(n)$ is the number of labeled $T_0$-topologies defined on the set $X,$ then the number of connected components is equal to $\sum_{m=1}^nS(n,m) T_0(m-1),$ where $S(n,m)$ are Stirling numbers of second kind. $($It is well known that the number of vertices in a graph $G(X)$ is equal to $\sum_{m=1}^nS(n,m) T_0(m).)$ -
Работа посвящена изучению наилучших равномерных рациональных приближений (НРРП) непрерывных функций на компактных, в том числе конечных, подмножествах числовой оси $\mathbb{R}$. Показано, что НРРП на конечном множестве существует не всегда. Более подробно изучен алгоритм Гельмута Вернера поиска НРРП вида $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ для функций на множестве из $N=m+n+2$ точек $x_1<\ldots<x_N$. Этот алгоритм может использоваться в алгоритме Ремеза поиска НРРП на отрезке. При работе алгоритма Вернера вычисляется $(n+1)$ вещественное собственное значение $h_1,\ldots,h_{n+1}$ для пучка матриц $A-hB$, где $A$ и $B$ - некоторые симметричные матрицы. Каждому собственному значению сопоставляется своя рациональная дробь вида $P_m/Q_n$, являющаяся кандидатом на наилучшее приближение. Поскольку не более одной из этих дробей свободны от полюсов на отрезке $[x_1, x_N]$, то возникает задача отыскания того собственного значения, которому соответствует рациональная дробь без полюсов. В работе показано, что если $m=0$, все значения $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ различны и НРРП положительно (отрицательно) во всех точках $x_1,\ldots,x_{n+2}$, то это собственное значение занимает $[(n+2)/2]$-е ($[(n+3)/2]$-е) место по величине. Приведены три численных примера, иллюстрирующих это утверждение.
наилучшие равномерные рациональные приближения, рациональные приближения на конечных множествах, алгоритм Ремеза, алгоритм Вернера, выбор собственных значений в алгоритме ВернераThe paper deals with the best uniform rational approximations (BURA) of continuous functions on compact (and even finite) subsets of real axis $\mathbb{R}$.The authors show that BURA does not always exist. They study the algorithm of Helmut Werner in more detail. This algorithm serves to search for BURA of the type $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ for functions on a set of $N=m+n+2$ points $x_1<\ldots<x_N$. It can be used within the Remez algorithm of searching for BURA on a segment. The Verner algorithm calculates $(n+1)$ real eigenvalues $h_1,\ldots,h_{n+1}$ for the matrix pencil $A-hB$, where $A$ and $B$ are some symmetric matrices. Each eigenvalue generates a rational fraction of the type $P_m/Q_n$ which is a candidate for the best approximation. It is known that at most one of these fractions is free from poles on the segment $[x_1, x_N]$, so the following problem arises: how to determine the eigenvalue which generates the rational fraction without poles? It is shown that if $m=0$ and all values $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ are different and the approximating function is positive (negative) at all points $x_1,\ldots,x_{n+2}$, then this eigenvalue ranks $[(n+2)/2]$-th ($[(n+3)/2]$-th) in value. Three numerical examples illustrate this statement.
-
В статье исследуются свойства функции цены задачи оптимального управления на бесконечном горизонте с неограниченным подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Выводится оценка аппроксимации функции цены в задаче с бесконечным горизонтом значениями функции цены в задачах с удлиняющимся конечным горизонтом. Выявляется структура функции цены через значения стационарной функции цены, зависящей только от фазовой переменной. Дается описание асимптотики роста значений функции цены для функционалов качества различного вида, принятых в экономическом и финансовом моделировании: логарифмических, степенных, экспоненциальных, линейных. Устанавливается свойство непрерывности функции цены и выводятся оценки гёльдеровских параметров непрерывности. Полученные оценки необходимы для разработки сеточных алгоритмов построения функций цены в задачах оптимального управления с бесконечным горизонтом.
оптимальное управление, бесконечный горизонт, функция цены, оценка модуля непрерывности, асимптотические свойстваThe article investigates properties of the value function of the optimal control problem on infinite horizon with an unlimited integrand index appearing in the quality functional with a discount factor. The estimate is derived for approximating the value function in a problem with the infinite horizon by levels of value functions in problems with lengthening finite horizons. The structure of the value function is identified basing on stationary value functions which depend only on phase variables. The description is given for the asymptotic growth of the value function generated by various types of the quality functional applied in economic and financial modeling: logarithmic, power, exponential, linear functions. The property of continuity is specified for the value function and estimates are deduced for the Hölder parameters of continuity. These estimates are needed for the development of grid algorithms designed for construction of the value function in optimal control problems with infinite horizon.
-
В работе изучается влияние шума на модель ферментативной реакции Голдбетера, описывающую механизм колебательного синтеза циклического аденозинмонофосфата в клетке. Показано, что модель отличается высокой чувствительностью к вариациям параметров и начальных условий. Демонстрируется и исследуется явление стохастической возбудимости в зоне устойчивого равновесия. Показано, что воздействие шума приводит к резкому переходу от малоамплитудных стохастических осцилляций к спайковым колебаниям большой амплитуды. Для параметрического анализа этого явления используются техника функций стохастической чувствительности и метод доверительных эллипсов. Изучена зависимость критического значения интенсивности шума, при котором начинается генерация большеамплитудных колебаний, от близости управляющего параметра к точке бифуркации. Для детального анализа частотных свойств стохастических колебаний проведен статистический анализ межспайковых интервалов и обнаружено явление когерентного резонанса.
We study the influence of noise on the Goldbeter model of the enzymatic reaction, which describes the mechanism of oscillatory synthesis of cyclic adenosine monophosphate in a cell. It is shown that the model is highly sensitive to variations of parameters and initial conditions. The phenomenon of stochastic excitability in a stable equilibrium zone is demonstrated and studied. We show that the noise results in a sharp transition from low-amplitude stochastic oscillations to large-amplitude spike oscillations. For the parametric analysis of this phenomenon, the technique of stochastic sensitivity functions and the method of confidence ellipses are used. We study how the critical value of the noise intensity corresponding to the generation of large-amplitude oscillations depends on the proximity of a control parameter to a bifurcation point. For a detailed analysis of the frequency properties of stochastic oscillations, a statistical analysis of interspike intervals is carried out, and a phenomenon of coherent resonance is found.
-
В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.
цветной шум, время корреляции, стохастическая чувствительность, электронный генератор, стохастическая возбудимостьThe influence of colored noise on the equilibrium regimes of nonlinear dynamical systems is investigated. To study the response of the system to small perturbations, we use an asymptotic approach that develops the stochastic sensitivity function technique. The stochastic sensitivity of equilibrium in a general multidimensional dynamical system is defined by some matrix. For this stochastic sensitivity matrix, we obtain a matrix algebraic equation. An exact solution of this equation is given for an important class of nonlinear oscillators with perturbations in the form of colored noises. This theory is applied to the parametric study of the response of the electronic generator with hard excitation to colored noises with various correlation times. The dependence of the dispersion of random states on the characteristic correlation time is investigated. It is shown that this dependence can be nonmonotonic and have maxima corresponding to the resonances. The paper discusses the probabilistic mechanism of the stochastic generation of large-amplitude oscillations caused by color noise.
-
О неподвижных точках многозначных отображений метрических пространств и дифференциальных включениях, с. 12-26В работе предложено обобщение теоремы Надлера о неподвижных точках для многозначных отображений действующих в метрических пространствах. Полученный результат позволяет изучать существование неподвижных точек у многозначных отображений, которые не обязательно являются сжимающими, и даже непрерывными, относительно метрики Хаусдорфа, и образами которых могут быть произвольные множества соответствующего метрического пространства. Упомянутый результат можно использовать для исследования дифференциальных и функционально-дифференциальных уравнений с разрывами, а также включений, правые части которых порождены многозначными отображениями с произвольными образами. Во второй части работы, в качестве приложения, получены условия существования и продолжаемости решений задачи Коши для дифференциального включения с некомпактной правой частью в пространстве Rn.
A generalization of the Nadler fixed point theorem for multi-valued maps acting in metric spaces is proposed. The obtained result allows to study the existence of fixed points for multi-valued maps that have as images any arbitrary sets of the corresponding metric space and are not necessarily contracting, or even continuous, with respect to the Hausdorff metric. The mentioned result can be used for investigating differential and functional-differential equations with discontinuities and inclusions generated by multi-valued maps with arbitrary images. In the second part of the paper, as an application, conditions of existence and continuation of solutions to the Cauchy problem for a differential inclusion with noncompact in Rn right-hand side are derived.
-
В данной работе предлагается новый метод классификации метрических функций феноменологически симметричных геометрий двух множеств. Он называется методом вложения, суть которого состоит в нахождении метрических функций феноменологически симметричных геометрий двух множеств высокого ранга по известной феноменологически симметричной геометрии двух множеств ранга на единицу ниже. Так по ранее известной метрической функции феноменологически симметричной геометрии двух множеств ранга $(2,2)$ находится метрическая функция феноменологически симметричной геометрии двух множеств ранга $(3,2)$, по феноменологически симметричной геометрии двух множеств ранга $(3,2)$ находится феноменологически симметричной геометрии двух множеств ранга $(4,2)$. Затем доказывается, что вложение феноменологически симметричной геометрии двух множеств $(4,2)$ в феноменологически симметричной геометрии двух множеств ранга $(5,2)$ отсутствует. Для решения поставленной задачи составляются специальные функциональные уравнения, которые сводятся к хорошо известным дифференциальным уравнениям.
феноменологически симметричная геометрия двух множеств, метрическая функция, дифференциальное уравнениеIn this paper, we propose a new method of classification of metric functions of phenomenologically symmetric geometries of two sets. It is called the method of embedding, the essence of which is to find the metric functions of phenomenologically symmetric geometries of two high-rank sets for the given phenomenologically symmetric geometry of two sets having rank less by $1$. By the previously known metric function of phenomenologically symmetric geometry of two sets of the rank $(2,2)$ the metric function of phenomenologically symmetric geometry of two sets of the rank $(3,2)$ is found, by the phenomenologically symmetric geometry of two sets of the rank $(3,2)$ we find phenomenologically symmetric geometry of two sets of the rank $(4,2)$. Then it is proved that embedding of phenomenologically symmetric geometry of two sets of the rank $(4,2)$ into the phenomenologically symmetric geometry of two sets of the rank $(5,2)$ is absent. To solve the problem we generate special functional equations which are reduced to well-known differential equations.
-
Рассматриваются вопросы разрешимости краевых задач для линейных функционально-дифференциальных уравнений. Предлагаются утверждения, позволяющие получать условия существования единственного решения, неотрицательности функции Грина и фундаментального решения однородного уравнения. Для применения этих утверждений требуется задать «эталонную» краевую задачу, обладающую соответствующими свойствами, и определить некоторый оператор по приведенному правилу через операторы, порожденные исследуемой и «эталонной» задачами. Если спектральный радиус этого оператора меньше 1, то рассматриваемая краевая задача однозначно разрешима. Аналогично: для получения условий неотрицательности функции Грина и фундаментального решения требуется определить по приведенному в работе правилу специальный оператор и проверить его положительность. Рассмотрен пример применения полученных утверждений к конкретной краевой задаче с интегральным краевым условием для уравнения, содержащего отклонения в аргументе неизвестной функции и ее производной.
линейное функционально-дифференциальное уравнение, краевая задача, функция Грина, фундаментальное решение однородного уравнения, положительный оператор
Comparison of solutions to boundary-value problems for linear functional-differential equations, pp. 284-292We consider the issues of solvability of boundary value problems for linear functional-differential equations. Statements allowing one to obtain conditions for the existence of a unique solution and for non-negativity of the Green's function, and to obtain a fundamental solution to the homogeneous equation are suggested. In order to apply these statements, one needs to define a “reference” boundary value problem that possesses the corresponding properties and to define an operator by means of the operators generated by the problem under study and the “reference” problem according to the given rule. If the spectral radius of this operator is less than 1, then the boundary value problem under consideration is uniquely solvable. Similarly, in order to obtain conditions for the nonnegativity of the Green's function and the fundamental solution, it is required to determine a special operator by the rule given in the paper and to verify its positivity. An example of application of the statements obtained to a particular boundary value problem with an integral boundary condition for the equation containing argument deviations to the unknown function and to its derivative is considered.
-
О банаховых пространствах правильных функций многих переменных. Аналог интеграла Римана–Стилтьеса, с. 182-203В предыдущей работе авторов введено понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Пространство ${\mathrm G}(X)$ таких функций банахово по $\sup$-норме и является замыканием пространства ступенчатых функций. В настоящей работе определено и исследовано пространство ${\mathrm G}^F(X)$, отличающееся от ${\mathrm G}(X)$ тем, что здесь в определении правильных функций многих переменных вместо специальных разбиений фигурируют $F$-разбиения: их элементами являются измеримые по обобщенной мере Жордана (по мере $m_{_{\!F}}$) непустые открытые множества. (Через $F$ обозначена функция, порождающая меру $m_{_{\!F}}$.) Во второй части работы определено понятие $F$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по мере $m_{_{\!F}}$ замыкание непустого открытого ограниченного множества $X_0\subseteq{\mathbb R}^n$, а функция $f\colon X\to {\mathbb R}$ интегрируема в смысле Римана–Стилтьеса относительно меры $m_{_{\!F}}$, то она $F$-интегрируема. При этом значения кратных интегралов совпадают. Все функции из пространства ${\mathrm G}^F(X)$ являются $F$-интегрируемыми. Доказаны основные свойства $F$-интеграла Римана–Стилтьеса.
On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral, pp. 182-203In the previous work of the authors, the concept of a regulated function of several variables $f\colon X\to\mathbb R$ was introduced, where $X\subseteq \mathbb R^n.$ The definition is based on the concept of a special partition of the set $X$ and the concept oscillation of the function $f$ on the elements of the partition. The space ${\rm G}(X)$ of such functions is Banach in the $\sup$-norm and is the closure of the space of step functions. In this paper, the space ${\rm G}^F(X)$ is defined and studied, which differs from ${\rm G}(X)$ in that here, in defining regulated functions of several variables, instead of special partitions, $F$-partitions are used: their elements are non-empty open sets measurable by the generalized Jordan measure (by the measure $m_{_{\!F}}$). (Symbol $F$ denotes the function generating the measure $m_{_{\!F}}.$) In the second part of the work, the concept of $F$-integrability of functions of several variables is defined. It is proved that if $X$ is the closure of a non-empty open bounded set $X_0\subseteq {\mathbb R}^n,$ measurable with respect to measure $m_{_{\!F}},$ and the function $f\colon X\to {\mathbb R}$ is integrable in the Riemann–Stieltjes sense with respect to the measure $m_{_{\!F}}$, then it is $F$-integrable. In this case, the values of the multiple integrals coincide. All functions from the space ${\rm G}^F(X)$ are $F$-integrable. The main properties of the Riemann–Stieltjes $F$-integral are proved.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.