Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.
The paper is concerned with the problem of absolute continuity of the spectrum of the two-dimensional generalized periodic Schrodinger operator $H_g+V=-\nabla g\nabla+V$ where the continuous positive function $g$ and the scalar potential $V$ have a common period lattice $\Lambda$. The solutions of the equation $(H_g+V)\varphi=0$ determine, in particular, the electric field and the magnetic field of electromagnetic waves propagating in two-dimensional photonic crystals. The function $g$ and the scalar potential $V$ are expressed in terms of the electric permittivity $\varepsilon$ and the magnetic permeability $\mu$ ($V$ also depends on the frequency of the electromagnetic wave). The electric permittivity $\varepsilon$ may be a discontinuous function (and usually it is chosen to be piecewise constant) so the problem to relax the known smoothness conditions on the function $g$ that provide absolute continuity of the spectrum of the operator $H_g+V$ arises. In the present paper we assume that the Fourier coefficients of the functions $g^{\pm\frac12}$ for some $q\in[1, \frac43)$ satisfy the condition $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$, and the scalar potential $V$ has relative bound zero with respect to the operator $-\Delta$ in the sense of quadratic forms. Let $K$ be the fundamental domain of the lattice $\Lambda$, and assume that $K^*$ is the fundamental domain of the reciprocal lattice $\Lambda^*$. The operator $H_g+V$ is unitarily equivalent to the direct integral of operators $H_g(k)+V$, with quasimomenta $k\in 2\pi K^*$, acting on the space $L^2(K)$. The last operators can be also considered for complex vectors $k+ik'\in \mathbb{C}^2$. We use the Thomas method. The proof of absolute continuity of the spectrum of the operator $H_g+V$ amounts to showing that the operators $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, are invertible for some appropriately chosen complex vectors $k+ik'\in \mathbb{C}^2$ (depending on $g$, $V$, and the number $\lambda$) with sufficiently large imaginary parts $k'$.
-
В настоящей работе приведена модель анизотропного роста дендритных кристаллов из химически чистой и бинарной жидкости (раствора или расплава) с учетом вынужденной конвекции жидкой фазы. Представлены зависимости скорости роста и радиуса вершины дендрита от переохлаждения жидкости для случаев химически чистого материала и с учетом примесей. Дан сравнительный анализ влияния вынужденной конвекции на кинетику роста дендритов. Для оценки скорости роста и морфологии дендрита используется модель высокоскоростного роста дендритов, которая учитывает вклад конвективного потока и анизотропные свойства границы раздела кристалл-жидкость. В модели также используется гиперболическое уравнение диффузии для описания неравновесного захвата примеси поверхностью кристалла, которое возникает при быстром росте кристаллов.
The paper presents the model of anisotropic growth of dendritic crystallization of chemically pure and binary liquid (solution or melt) based on forced convection of the liquid phase. The dependencies of the growth rate and the radius of the top of a dendrite from under-cooling fluid in cases of a chemically pure material and alloys are presented. A comparative analysis of the influence of forced convection on the dendrite growth kinetics is carried out. Evaluation of growth rate and morphology of dendrite by high-speed crystal growth model was done. The contribution of convective flow and the anisotropic properties of the liquid-crystal boundary were taking into account. The model is also used hyperbolic diffusion equation to describe the non-equilibrium impurity capture by crystal surface, which occurs under the rapid crystals growth.
-
Асимптотика уровней оператора Шрёдингера для кристаллической пленки с нелокальным потенциалом, с. 462-473В работе рассматривается трехмерный оператор Шрёдингера для кристаллической пленки с нелокальным потенциалом, представляющим собой сумму оператора умножения на функцию и оператора ранга два («сепарабельного потенциала»), вида $V=W(x)+\lambda _1(\cdot ,\phi _1)\phi _1+\lambda _2(\cdot ,\phi _2)\phi _2$. Здесь функция $W(x)$ экспоненциально убывает по переменной $x_3$, функции $\phi _1(x)$, $\phi _2(x)$ линейно независимы, блоховские по переменным $x_1, \, x_2$ и экспоненциально убывающие по переменной $x_3$. Потенциалы данного рода возникают в теории псевдопотенциала. Под уровнем оператора Шрёдингера понимается его собственное значение или резонанс. Доказаны существование и единственность уровня данного оператора вблизи нуля, получена его асимптотика.
Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential, pp. 462-473We consider a three-dimensional Schrödinger operator for a crystal film with a nonlocal potential, which is a sum of an operator of multiplication by a function, and an operator of rank two (“separable potential”) of the form $V=W (x) +\lambda _1(\cdot,\phi _1)\phi _1+\lambda _2(\cdot,\phi _2)\phi _2 $. Here the function $W(x)$ decreases exponentially in the variable $x_3$, the functions $\phi _1(x)$, $\phi _2(x)$ are linearly independent, of Bloch type in the variables $x_1,\,x_2$ and exponentially decreasing in the variable $x_3$. Potentials of this type appear in the pseudopotential theory. A level of the Schrödinger operator is its eigenvalue or resonance. The existence and uniqueness of the level of this operator near zero is proved, and its asymptotics is obtained.
-
В статье рассматривается метод поиска и анализа текстурных компонент по прямым полюсным фигурам, с учетом симметрии кубического кристалла и образца. Алгоритм основан на представлении плоскостей отражения полярным комплексом векторов. Поиск ориентации происходит путем перемещения оси полярного комплекса по единичной полусфере, с последующим вращением полярного комплекса относительно этой оси. Далее определяется положение стереографических проекций векторов полярного комплекса на дискретной прямой полюсной фигуре. Ориентация считается найденной, если проекции по крайней мере трех векторов полярного комплекса попадают в область с ненулевой интенсивностью. Для каждой ориентации вычисляется вектор Родрига. Кроме того, определяются углы Эйлера и индексы Миллера. Текстурные компоненты выделяются в интерактивном режиме путем кластеризации данных в пространстве Родрига. С помощью ковариационной матрицы определяются собственные значения и векторы, характеризующие пространственное рассеяние текстурных компонент. В работе исследуются полюсные фигуры алюминиевой фольги после различных текстурных преобразований. Найденные текстурные компоненты представлены в пространстве Родрига.
текстура, прямая полюсная фигура, ориентация кристалла, текстурные компоненты, пространство Родрига, текстурные преобразованияThe article deals with the method of search and analysis of textural components using direct polar figures with due account for the symmetry of a cubic crystal and a sample. The algorithm is based on the representation of reflection planes by a polar complex of vectors. Search of orientation is made by moving the axis of a polar complex over the unit hemisphere followed by the rotation of a polar complex relative to this axis. Then the position of stereographic projections of the polar complex vectors on a discrete direct pole figure is determined. Orientation is found when the projections of at least three polar complex vectors are located in the area with non-zero intensity. For each orientation a Rodrigues vector is calculated. In addition, Euler angles and Miller indices are determined. Textural components are allocated interactively by clustering the data in Rodrigues space. Using the covariance matrix the eigenvalues and eigenvectors are determined characterizing the spatial dispersion of textural components. Pole figures of an aluminum foil after various textural transformations are investigated in the article. Obtained textural components are displayed in Rodrigues space.
-
Граничные условия и тепловое сопротивление на межфазной поверхности затвердевающей жидкости, с. 194-206Для затвердевающего чистого расплава получены граничные условия на межфазной поверхности, рассматриваемой в рамках модели Гиббса. Они включают переменные каждой фазы, взятые на границе раздела, а также величины, характеризующие межфазную поверхность, такие как поверхностная температура и поверхностный тепловой поток. Введение поверхностной температуры, как независимой переменной, позволяет описать рассеяние энергии на межфазной поверхности. Для случая стационарного движения плоского фронта получено выражение для межфазного температурного разрыва. Рассмотрено влияние теплового сопротивления Капицы на скорость фронта. Показано, что учет теплового сопротивления приводит к нелинейному поведению скорости кристаллизации от переохлаждения. Найдены условия стационарного движения фронта.
Boundary conditions for the solid-liquid interface of the solidifying pure melt have been derived. In the derivation the model of Gibbs interface is used. The boundary conditions include both the state quantities of bulk phases taken at the interface and the quantities characterizing the interfacial surface such as surface temperature and surface heat flux. Introduction of the surface temperature as an independent variable, allows us to describe the scattering energy at the interface. For the steady-state motion of the planar interface the expression for the temperature discontinuity across the phase boundary has been obtained. Effect of Kapitza resistance on interface velocity is considered. It is shown that the thermal resistance leads to non-linearity in solidification kinetics, namely, in “velocity-undercooling” relation. The conditions of the steady-state motion of the planar interface are found.
-
Приведены результаты исследования структуры быстрозатвердевших сплавов системы Sn-Bi, полученных при скорости охлаждения расплава $10^{5}$ К/с с составами Sn-X мас. % Bi (X = 13, 20, 30, 43). Исследования микроструктуры проводились с помощью растровой электронной микроскопии, зеренная структура анализировалась методом дифракции отраженных электронов. Установлено, что кристаллизация всех исследуемых сплавов протекает по химически безразделительному механизму с образованием пересыщенного твердого раствора висмута в решетке олова с составом соответствующим исходному. Наблюдения за распадом твердого раствора при комнатной температуре показывают, что для сплавов концентрация висмута в которых не превышает предельной растворимости висмута в олове (20 мас. %) распад протекает по смешанному механизму непрерывного и прерывистого распадов. В результате непрерывного распада в объеме зерна олова образуются игольчатые когерентные включения висмута. Скорость прерывистого распада увеличивается с повышением концентрации висмута в расплаве. В доэвтектических сплавах с концентрацией висмута выше предельной растворимости распад протекает по прерывистому механизму. Полный распад происходит в несколько стадий, в результате чего в фольгах формируются участки с микроструктурой различной степени дисперсности.
сверхбыстрая закалка из расплава, химически безразделительная кристаллизация, твердый раствор, непрерывный распад, прерывистый распад, олово, висмутThe results of microstructural study of rapidly solidified Sn-Bi alloys obtained at the melt cooling rate of $10^{5}$ K/s with the compositions of Sn-X wt. % Bi (X = 13, 20, 30, 43) are presented. Microstructural studies are carried out using scanning electron microscopy; a grain structure is analyzed by an electron backscatter diffraction technique. It is found out that the crystallization of all investigated alloys proceeds by a chemically partionless mechanism which results in the formation of a supersaturated solid solution of bismuth in a tin lattice with the original composition. Observations of the solid solution decomposition process at room temperature shows that decomposition proceeds by both continuous and discontinuous mechanisms in alloys with bismuth concentration not higher than the limit of solubility of bismuth in a tin (20 wt. %). Needle-like coherent bismuth inclusions are formed in the volume of a tin grain as a result of continuous decomposition. Discontinuous decomposition rate increases with the increasing concentration of bismuth in the alloy. In hipoeutectic alloys with bismuth concentration higher than the solubility limit, decomposition occurs by discontinuous mechanism. Complete decomposition proceeds by several stages and results in formation of areas with different degrees of microstructure fineness.
-
В рамках несвязанной теории термовязкоупругости рассматривается фронтальное формирование сферического изделия. Напряженное состояние изделия определяется с точки зрения непрерывно наращиваемого твердого тела. На поверхности роста задан полный тензор напряжений. Учитывается давление со стороны жидкого слоя на образовавшуюся твердую часть.
полимеризация, кристаллизация, фронтальный режим, термовязкоупругость, несвязанная теория, непрерывное наращивание, внутренние технологические напряжения
Tension of frontally formed spherical product, pp. 123-134Frontal formation of a spherical product within the limits of the untied theory of termoviscoelasticity is considered. The tension of a formed product is defined in terms of continuously growing body. The full tension tensor is given on the growing surface. The pressure from the liquid layer on the formed solid part is taken into account.
-
Проведен анализ развития скорости неизотермического роста вершины параболического дендрита от момента образования кристалла до выхода скорости на свое стационарное значение. Для определения временной зависимости скорости роста использовалось условие Гиббса-Томсона для сильно неравновесной кристаллизации химически однокомпонентной жидкости. Показано, что зависимость скорости от переохлаждения имеет экспоненциальный характер. Получена количественная и качественная оценки времени достижения стационарного режима роста дендрита при постоянном значении переохлаждения. Аналитически рассчитанная скорость как функция времени совпадает с численными расчетами.
On the unsteadiness time of primary dendritic growth, pp. 439-444The evolution of the growth rate of a dendritic tip for nonisothermal crystal growth from the moment of crystal formation to the moment when the growth rate attains its steady-state value is considered. Gibbs-Thomson condition for highly nonequilibrium rapidly moving crystallization of a pure one-component liquid is used to determine the time dependence of the growth rate of a dendritic tip. It is shown that the dependence of the growth rate on overcooling has the form of an exponential law. Under the condition of constant overcooling an estimation of the time of reaching the steady-state regime of growth is obtained. The analytically derived velocity of growth as a function of time coincides with numerical calculations.
-
Эффективность распараллеливания алгоритма решения уравнения PFC с использованием библиотеки PetIGA, с. 445-450В работе исследуется алгоритм решения уравнения кристаллического фазового поля (Phase Field Crystal - PFC) в гиперболической постановке. Уравнение описывает фазовые превращения из метастабильного или неустойчивого состояния на масштабе атомной плотности и является дифференциальным уравнением шестого порядка по пространству и второго порядка по времени. Алгоритм основан на методе изогеометрического анализа (IGA) и реализован посредством библиотеки PetIGA. Полученный программный код допускает распараллеливание расчетов, что существенно ускоряет процесс решения задачи. Дана оценка эффективности используемых инструментов при проведении расчетов на высокопроизводительных вычислительных кластерах. Проведен анализ эффективности исследуемого алгоритма при работе с гетерогенными вычислительными системами.
The effectiveness of parallelizing an algorithm of the PFC equation solution using PetIGA library, pp. 445-450The paper presents an algorithm for solving the equation of Phase Field Crystal (PFC) in a hyperbolic statement that allows to describe the phase transitions of metastable or unstable state at the nuclear density scale, described by a differential equation of the sixth order with respect to the space variable and the second order with respect to the time variable. The algorithm is based on the method of isogeometric analysis (IGA) and is implemented by PetIGA library. The resulting code allows parallel computations, which significantly speeds up the process of solving a problem. The effectiveness of used instruments during the calculations on high-performance computing clusters is evaluated. An analysis of the effectiveness of the current algorithm is carried out for heterogeneous computer systems.
-
Нуклеация и рост новой фазы на промежуточной стадии фазовых переходов в метастабильных растворах и расплавах, с. 283-296Найдено полное аналитическое решение интегро-дифференциальной модели, описывающей промежуточную стадию фазовых переходов в однокомпонентных расплавах и растворах без учета флуктуаций в скоростях роста кристаллов. В рамках этой модели получено точное аналитическое решение кинетического уравнения - найдена плотность функции распределения кристаллов по размерам. Выведено интегро-дифференциальное уравнение для степени метастабильности системы (для ее переохлаждения/пересыщения) при различных кинетических механизмах нуклеации зародышей. Построено полное аналитическое решение этого уравнения на основе метода седловой точки для вычисления интеграла лапласовского типа (метода перевала). Проанализировано четыре приближения аналитического решения и показана его сходимость. Исследованы кинетические механизмы Вебера-Вольмера-Френкеля-Зельдовича и Майера. Определены временные зависимости числа кристаллов и среднего размера кристаллов для переохлажденных расплавов.
Nucleation and growth of a new phase at the intermediate stage of phase transitions in metastable solutions and melts, pp. 283-296A complete analytical solution of an integro-differential model, which describes the intermediate stage of phase transitions in one-component melts and solutions without allowance for fluctuations in the crystal growth rates, is found. An exact analytical solution of the kinetic equation is determined within the framework of this model. The density of distribution function of crystals in sizes is found. An integro-differential equation for the system metastability level (for its supercooling/supersaturation) is derived for different kinetic mechanisms of particle nucleation. A complete analytical solution of this equation is constructed on the basis of saddle-point method for the Laplace-type integral (steepest descent method). Four approximations of the analytical solution are analyzed and its convergence is shown. The kinetic mechanisms of Weber-Volmer-Frenkel-Zel’dovich and Meirs are studied. A transient behavior of the number of particles and the mean crystal size is determined for supercooled melts.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.