Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'measure':
Найдено статей: 71
  1. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

    We consider a game problem of maximin of cost function defined on the product of attraction sets of players’ dynamic systems terminal positions. These sets are constructed using the extension in the class of finitely additive measures.

  2. Жуковский В.И., Кудрявцев К.Н., Горбатов А.С.
    Равновесие по Бержу в модели олигополии Курно, с. 147-156

    В работе построено равновесие по Бержу в модели олигополии Курно. Проведено сравнение равновесий по Бержу и по Нэшу. Выявлены условия, при которых выигрыши игроков в ситуации равновесия по Бержу больше, чем их выигрыши в ситуации равновесия по Нэшу.

    Zhukovskii V.I., Kudryavtsev K.N., Gorbatov A.S.
    The Berge equilibrium in Cournot's model of oligopoly, pp. 147-156

    In many large areas of the economy (such as metallurgy, oil production and refining, electronics), the main competition takes place among several companies that dominate the market. The first models of such markets - oligopolies were described more than a hundred years ago in articles by Cournot, Bertrand, Hotelling. Modeling of oligopolies continues in many modern works. Moreover, in 2014 Nobel Prize in Economics “for his analysis of market power and regulation in sectors with few large companies” was received by Jean Tirole - the author of one of the best modern textbooks on the theory of imperfect competition “The Theory of Industrial Organization”. The main idea of all these publications, studying the behavior of oligopolies, is that every company is primarily concerned with its profits. This approach meets the concept of Nash equilibrium and is actively used in modeling the behavior of players in a competitive market. The exact opposite of such “selfish” equilibrium is “altruistic” concept of Berge equilibrium. In this approach, each player, without having to worry about himself, choose his actions (strategies) trying to maximize the profits of all other market participants. This concept called Berge equilibrium appeared in Russia in 1994 in reference to the France Claude Berge monograph published in 1957. The first works on the concept of Berge equilibrium belong to K.S. Vaisman and V.I. Zhukovskii. Once outside Russia, the concept of “Berge equilibrium” is slowly gaining popularity. To day, the number of publications related to this balance is already measured in tens. However, all of these items are limited to purely theoretical issues, or, in general, to psychology applications. Works devoted to the study of Berge equilibrium in economic problems, were not seen until now. It's probably a consequence of Martin Shubik's review (“… no attention is paid to the application to the economy. … the book is of little interest for economists”) of the Berge's book, it “scared” economists for a long time. However, it is not so simple. In this article, Berge equilibrium is considered in Cournot oligopoly, its relation to Nash equilibrium is studied. Cases are revealed in which players gain more profit by following the concept of Berge equilibrium, than by using strategies dictated by Nash equilibrium.

  3. Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.

    Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i.e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A.A. Dzhalilov and K.M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i.e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i.e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.

  4. В статье рассматривается задача устойчивой реконструкции неизвестного входа системы по результатам неточных измерений ее решения. Суть задачи состоит в следующем. Имеется система, описываемая распределенным уравнением второго порядка, решение которой зависит от входа, меняющегося со временем. Как вход, так и решение заранее не известны. В дискретные моменты времени измеряется решение уравнения. Результаты измерения неточны. Требуется построить алгоритм приближенного восстановления входа, обладающий свойствами динамичности и устойчивости. Свойство динамичности означает, что текущие значения приближений входа вычисляются в реальном времени (он-лайн). Свойство устойчивости — что приближения являются достаточно точными, при хорошей точности измерений. Задача относится к классу обратных задач. Представленный в статье алгоритм основан на конструкциях теории устойчивого динамического обращения в комбинации с методами некорректных задач и позиционного управления.

    In this paper, we consider the stable reconstruction problem of the unknown input of a distributed system of second order by results of inaccurate measurements of its solution. The content of the problem considered is as follows. We consider a distributed equation of second order. The solution of the equation depends on the input varying in the time. The input, as well as the solution, is not given in advance. At discrete times the solution of the equation is measured. These measurements are not accurate in general. It is required to design an algorithm for approximate reconstruction of the input that has dynamical and stability properties. The dynamical property means that the current values of approximations of the input are produced on-line, and the stability property means that the approximations are arbitrarily accurate for a sufficient accuracy of measurements. The problem refers to the class of inverse problems. The algorithm presented in the paper is based on the constructions of a stable dynamical inversion and on the combination of the methods of ill-posed problems and positional control theory.

  5. Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.

    Afanasova M.S., Obukhovskii V.V., Petrosyan G.G.
    On a generalized boundary value problem for a feedback control system with infinite delay, pp. 167-185

    We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.

  6. Абдуллаев Б.И., Имомкулов С.А., Шарипов Р.А.
    Структура особых множеств некоторых классов субгармонических функций, с. 519-535

    В данной работе дается обзор результатов об устранимых особых множествах для классов $m$-субгармонических ($m-sh$) и сильно $m$-субгармонических ($sh_m$), а также $\alpha$-субгармонических функций, которые применяются для изучения особых множеств $sh_{m}$ функций. Для сильно $m$-субгармонических функций из класса $L_{loc}^{p}$, доказывается, что множество является устранимым особым множеством, если имеет нулевую $C_{q,s}$-емкость. Доказательство этого утверждения основано на том, что пространство основных функций, с носителем на множестве $D\backslash E$, плотно по $L_{q}^{s}$-норме в пространстве основных функций, определенных на множестве $D$. Аналогичные результаты в случае классических (суб)гармонических функций были изучены в работах Л. Карлесона, Е. Долженко, М. Бланшет, С. Гардинера, Ж. Риихентаус, В. Шапиро, А. Садуллаева и Ж. Ярметова, Б. Абдуллаева и С. Имомкулова.

    Abdullaev B.I., Imomkulov S.A., Sharipov R.A.
    Structure of singular sets of some classes of subharmonic functions, pp. 519-535

    In this paper, we survey the recent results on removable singular sets for the classes of $m$-subharmonic ($m-sh$) and strongly $m$-subharmonic ($sh_m$), as well as $\alpha$-subharmonic functions, which are applied to study the singular sets of $sh_{m}$ functions. In particular, for strongly $m$-subharmonic functions from the class $L_{loc}^{p}$, it is proved that a set is a removable singular set if it has zero $C_{q,s}$-capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set $D\backslash E$, is dense in the space of test functions defined in the set $D$ on the $L_{q}^{s}$-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.

  7. Абдуллаев Б.И., Камолов Х.К.
    Теория потенциала на аналитической поверхности, с. 3-16

    Работа посвящена теории плюрипотенциала на аналитических поверхностях. Теория плюрипотенциала в комплексном пространстве ${\mathbb C}^{n}$, а также на штейновом комплексном многообразии $X\subset{\mathbb C}^{N}$ (без особого множества) изучена достаточно подробно. В этой работе мы предлагаем новую технологию для изучения основных объектов теории потенциала на аналитическом множестве с непустым особым (критическим) множеством.

    Abdullaev B.I., Kamolov X.Q.
    Potential theory on an analytic surface, pp. 3-16

    The work is devoted to the theory of pluripotential on analytic surfaces. The pluripotential theory on the complex space ${\mathbb C}^{n},$ as well as on the Stein complex manifold $X\subset{\mathbb C}^{N}$ (without a singular set) have been studied in enough detail. In this work, we propose a new approach for studying the main objects of potential theory on an analytic set with a non-empty singular (critical) set.

  8. Пусть $T_{\rho}$ — иррациональный поворот на единичной окружности $S^{1}\simeq [0,1)$. Рассмотрим последовательность $\{\mathcal{P}_{n}\}$ возрастающих разбиений на $S^{1}$. Определим время попадания $N_{n}(\mathcal{P}_n;x,y):= \inf \{ j\geq 1\mid T^{j}_{\rho}(y) \in P_{n}(x)\}$, где $P_{n}(x)$ — элемент разбиения $\mathcal{P}_{n}$, содержащий точку $x$. Д. Ким и Б. Сео [9] доказали, что время попадания $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ почти всюду (по мере Лебега) сходится к $\log2$, где последовательность разбиений $\{\mathcal{Q}_n\}$ порождена хаотическим отображением $f_{2}(x):=2x \bmod 1$. Хорошо известно, что отображение $f_{2}$ имеет положительную энтропию $\log2$. Возникает естественный вопрос о том, что если последовательность разбиений $\{\mathcal{P}_n\}$ порождена отображением с нулевой энтропией. В настоящей работе мы изучаем поведение $K_n(\tau_n;x,y)$ с последовательностью смешанных разбиений ${\tau_{n}}$ таких, что $\mathcal{Q}_{n}\cap [0,\frac{1}{2}]$ порождена отображением $f_{2}$, а $ \mathcal{D}_{n}\cap [\frac{1}{2},1]$ порождена иррациональным поворотом $T_{\rho}$. Доказано, что $K_n(\tau_n;x,y)$ почти всюду (по мере Лебега) сходится к кусочно-постоянной функции с двумя значениями. Также показано, что существуют некоторые иррациональные повороты, демонстрирующие различное поведение.

    Dzhalilov A.A., Khomidov M.K.
    Hitting functions for mixed partitions, pp. 197-211

    Let $T_{\rho}$ be an irrational rotation on a unit circle $S^{1}\simeq [0,1)$. Consider the sequence $\{\mathcal{P}_{n}\}$ of increasing partitions on $S^{1}$. Define the hitting times $N_{n}(\mathcal{P}_n;x,y):= \inf\{j\geq 1\mid T^{j}_{\rho}(y)\in P_{n}(x)\}$, where $P_{n}(x)$ is an element of $\mathcal{P}_{n}$ containing $x$. D. Kim and B. Seo in [9] proved that the rescaled hitting times $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ a.e. (with respect to the Lebesgue measure) converge to $\log2$, where the sequence of partitions $\{\mathcal{Q}_n\}$ is associated with chaotic map $f_{2}(x):=2x \bmod 1$. The map $f_{2}(x)$ has positive entropy $\log2$. A natural question is what if the sequence of partitions $\{\mathcal{P}_n\}$ is associated with a map with zero entropy. In present work we study the behavior of $K_n(\tau_n;x,y)$ with the sequence of mixed partitions $\{\tau_{n}\}$ such that $ \mathcal{P}_{n}\cap [0,\frac{1}{2}]$ is associated with map $f_{2}$ and $\mathcal{D}_{n}\cap [\frac{1}{2},1]$ is associated with irrational rotation $T_{\rho}$. It is proved that $K_n(\tau_n;x,y)$ a.e. converges to a piecewise constant function with two values. Also, it is shown that there are some irrational rotations that exhibit different behavior.

  9. В работе вводится понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Показано, что всякая функция, заданная и непрерывная на замыкании $X$ открытого ограниченного множества $X_0\subseteq\mathbb R^n$, является правильной (принадлежит пространству $\langle{\rm G(}X),\|\cdot\|\rangle$). Доказана полнота пространства ${\rm G}(X)$ по $\sup$-норме $\|\cdot\|$. Оно является замыканием пространства ступенчатых функций. Во второй части работы определено и исследовано пространство ${\rm G}^J(X)$, отличающееся от пространства ${\rm G}(X)$ тем, что в его определении вместо разбиений используются $J$-разбиения, элементы которых — измеримые по Жордану открытые множества. Перечисленные выше свойства пространства ${\rm G}(X)$ переносятся на пространство ${\rm G}^J(X)$. В заключительной части работы определено понятие $J$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по Жордану замыкание открытого ограниченного множества $X_0\subseteq\mathbb R^n$, а функция $f\colon X\to\mathbb R$ интегрируема по Риману, то она $J$-интегрируема. При этом значения интегралов совпадают. Все функции $f\in{\rm G}^J(X)$ являются $J$-интегрируемыми.

    The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.

  10. В работе рассматривается задача оптимального управления одномерным процессом, заданным стохастическим дифференциальным уравнением, в котором управление воздействует как на коэффициент сноса, так и на коэффициент диффузии, при этом диффузионная составляющая линейна по управлению $$dx(t) = b(t,x(t),u(t))dt +\sigma(t,x(t))u(t)dW(t),\qquad x(0) = x_0.$$ Здесь $x(t)$ - фазовая координата, $u(t)$ - управляющая функция, $W(t)$ - винеровский процесс. Доказана теорема, которая предоставляет структуру решения рассматриваемого уравнения в виде суперпозиции функций $x(t)=Φ(t,u(t)W(t)+y(t))$, в котором $Φ(t,v)$ - известная функция, полностью определяющаяся коэффициентом $σ(t,x)$, и не зависит от управления, а $y(t)$ - решение потраекторно-детерминированного дифференциального уравнения с мерой вида

    $$dy(t) = B(t,y(t),u(t))dt - W(t)du(t).$$

    Выявленная структура решения позволяет вместо исходной стохастической задачи оптимального управления исследовать новую эквивалентную задачу с фазовой переменной $y(t)$, которая является потраекторно-детерминированной задачей оптимального импульсного управления. При детерминированном рассмотрении новой задачи решения последней могут оказаться упреждающими функциями, поэтому в работе предлагается метод, который позволяет добиться неупреждаемости оптимальных решений. Суть метода заключается в модификации функционала потерь в новой потраекторно-детерминированной задаче специальным образом подобранным интегральным слагаемым, которое позволяет гарантировать неупреждаемость решений.

    We consider an optimal control problem for a one-dimensional process driven by stochastic differential equation, which has both drift and diffusion coefficients controlled, diffusion being linear in control

    $$dx(t) = b(t,x(t),u(t))dt +\sigma(t,x(t))u(t)dW(t), \qquad x(0) = x_0,$$

    where $x(t)$ is the state variable, $u(t)$ is the control variable and $W(t)$ is the Wiener process. We prove a theorem which gives a structure of solution for the considered differential equation as a superposition of functions $x(t)=Φ(t,u(t)W(t)+y(t))$, where $Φ(t,v)$ is the known function, which is completely determined by the diffusion coefficient σ(t,x) and is independent of control, and $y(t)$ is the solution to the pathwise-deterministic measure-driven differential equation

    $$dy(t) = B(t,y(t),u(t))dt - W(t)du(t).$$

    The revealed structure of the solution enables us to consider a new pathwise-deterministic impulsive optimal control problem with the state variable $y(t)$ which is equivalent to the original stochastic optimal control problem. Pathwise problems may have anticipative solutions, so we propose a method that makes it possible to build nonanticipative optimal solutions. The basic idea of the method is to modify cost functional in new pathwise problem with special integral term, which guarantees nonanticipativity of solutions.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref