Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.
краевая задача, априорная оценка, регулярная разрешимость, интегральное уравнение Фредгольма второго рода, резольвента, метод последовательных приближений
A boundary value problem for a fourth order partial differential equation with the lowest term, pp. 3-10In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.
-
Исследуется обратная задача определения многомерного ядра интегрального члена, зависящего от временной переменной $t$ и $ (n-1)$-мерной пространственной переменной $x'=\left(x_1,\ldots, x_ {n-1}\right)$ из $n$-мерного уравнения теплопроводности с переменным коэффициентом теплопроводности. Прямую задачу представляет задача Коши для этого уравнения. Интегральный член имеет вид свертки по времени ядра и решения прямой задачи. Дополнительное условие для решения обратной задачи задается решение прямой задачи на гиперплоскости $x_n = 0.$ В начале изучаются свойства решения прямой задачи. Для этого эта задача сводится к решению интегрального уравнения второго порядка вольтерровского типа и к нему применяется метод последовательных приближений. Далее поставленная обратная задача приводится к двум вспомогательным задачам, дополнительное условие второй из них содержит неизвестное ядро вне интеграла. Затем вспомогательные задачи заменяются эквивалентной замкнутой системой интегральных уравнений вольтерровского типа относительно неизвестных функций. Применяя метод сжатых отображений к этой системе в классе гёльдеровских функций доказываем основной результат статьи, который является теоремой локального существования и единственности решения обратной задачи.
The inverse problem of determining a multidimensional kernel of an integral term depending on a time variable $t$ and $ (n-1)$-dimensional spatial variable $x'=\left(x_1,\ldots, x_ {n-1}\right)$ in the $n$-dimensional heat equation with a variable coefficient of thermal conductivity is investigated. The direct problem is the Cauchy problem for this equation. The integral term has the time convolution form of kernel and direct problem solution. As additional information for solving the inverse problem, the solution of the direct problem on the hyperplane $x_n = 0$ is given. At the beginning, the properties of the solution to the direct problem are studied. For this, the problem is reduced to solving an integral equation of the second kind of Volterra-type and the method of successive approximations is applied to it. Further the stated inverse problem is reduced to two auxiliary problems, in the second one of them an unknown kernel is included in an additional condition outside integral. Then the auxiliary problems are replaced by an equivalent closed system of Volterra-type integral equations with respect to unknown functions. Applying the method of contraction mappings to this system in the Hölder class of functions, we prove the main result of the article, which is a local existence and uniqueness theorem of the inverse problem solution.
-
О сингулярном интегральном уравнении Вольтерра краевой задачи теплопроводности в вырождающейся области, с. 241-252В работе рассматривается сингулярное интегральное уравнение типа Вольтерра второго рода, к которому методом тепловых потенциалов редуцируются некоторые граничные задачи теплопроводности в областях с границей, изменяющейся со временем. Особенность такого рода задач заключается в том, что область вырождается в точку в начальный момент времени. Соответственно, отличительной особенностью исследуемого интегрального уравнения является то, что интеграл от ядра, при стремлении верхнего предела интегрирования к нижнему не равен нулю. Данное обстоятельство не позволяет решить данное уравнение методом последовательных приближений. Построено общее решение соответствующего характеристического уравнения и методом равносильной регуляризации Карлемана–Векуа найдено решение полного интегрального уравнения. Показано, что соответствующее однородное интегральное уравнение имеет ненулевое решение.
интегральное уравнение, сингулярное интегральное уравнение типа Вольтерра второго рода, метод регуляризации Карлемана–Векуа
On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain, pp. 241-252In this paper, we consider a singular Volterra type integral equation of the second kind, to which some boundary value problems of heat conduction in domains with a boundary varying with time are reduced by the method of thermal potentials. The peculiarity of such problems is that the domain degenerates into a point at the initial moment of time. Accordingly, a distinctive feature of the integral equation under study is that the integral of the kernel, as the upper limit of integration tends to the lower one, is not equal to zero. This circumstance does not allow solving this equation by the method of successive approximations. We constructed the general solution of the corresponding characteristic equation and found the solution of the complete integral equation by the Carleman–Vekua method of equivalent regularization. It is shown that the corresponding homogeneous integral equation has a nonzero solution.
-
Оценки устойчивости решений некоторых обратных задач для интегро-дифференциальных уравнений, с. 75-82В статье исследуются вопросы устойчивости решений обратных задач для двух интегро-дифференциальных уравнений гиперболического типа. Теоремы существования и единственности решений этих задач, в малом, были получены и опубликованы автором ранее. Поэтому в данной работе рассматриваются исключительно вопросы устойчивости этих решений. В теореме 1 доказывается условная устойчивость решения обратной задачи об определении ядра интеграла для интегро-дифференциального уравнения
$$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$ с начальными данными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta(x)$ и по дополнительной информации о решении прямой задачи $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ С этой целью обратная задача заменяется эквивалентной системой интегральных уравнений относительно неизвестных функций. Для доказательства теоремы применяется метод последовательных приближений. Далее, используются метод оценок интегральных уравнений и неравенство Гронуолла.
Аналогично доказываемая теорема 2 посвящается оценке условной устойчивости решения обратной задачи об определении ядра интеграла для того же интегро-дифференциального уравнения, в ограниченной по $x$ области $x\in(0,l),$ с начальными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta'(x)$ и граничными условиями $(u_x-hu)\big|_{x=0}=0,$ $(u_x+Hu)\big|_{x=l}=0$, $t>0$. В этом случае дополнительная информация о решении прямой задачи задается в виде $u(0,t)=f(t)$, $t\geqslant 0$. Здесь $h,H$ - вещественные и конечные числа.
Evaluation of the stability of some inverse problems solutions for integro-differential equations, pp. 75-82The paper investigates the stability of inverse problems solutions for two integro-differential hyperbolic equations. Theorems of existence and uniqueness of these solutions (in the small) have been obtained and published earlier by author. Thus only stability problems of these solutions are considered in this paper. In Theorem 1 we prove conditional stability of the solution of the following inverse problem: determine the kernel of the integral for integro-differential equation
$$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$
with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta(x),$ and additional information about the direct problem solution $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ The inverse problem is replaced by an equivalent system of integral equations for the unknown functions. To prove the theorem the method of successive approximations is used. Next, the method of estimating the integral equations and Gronwall's inequality are used.
In a similar manner we prove Theorem 2. It is devoted to estimating the conditional stability of the solution of kernel determination problem for the same integro-differential equation in a bounded domain with respect to $x,$ $x\in(0,l),$ with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta'(x),$ and boundary conditions $(u_x-hu)\big|_{x=0}=0$, $(u_x+Hu)\big|_{x=l}=0$, $t>0$. In this case the additional information about the direct problem solution is given as $u(0,t)=f(t)$, $t\geqslant0$. Here $h$ and $H$ are finite real numbers.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.