Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'neutral type':
Найдено статей: 7
  1. Выведена формула, связывающая фундаментальное решение и матрицу Коши линейного автономного скалярного уравнения нейтрального типа.

    The paper presents simple formulas relating the fundamental solution of a linear differential-difference equation of neutral type to its Cauchy function.

  2. В работе изучена следующая задача: для линейной автономной дифференциально-разностной системы нейтрального типа с запаздыванием в состоянии требуется обеспечить ее полное успокоение с помощью обратной связью. Для решения указанной задачи предложен линейный автономный динамический дифференциально-разностный регулятор типа обратной связи по состоянию, не выводящий замкнутую систему из исходного класса линейных автономных систем нейтрального типа. Достаточное условие существования такого регулятора совпадает с критерием полной управляемости. Кроме того, замкнутая система будет иметь конечный спектр, что существенно упрощает задачу вычисления текущего состояния в ходе технической реализации регулятора. Основная идея исследования заключается в выборе параметров регулятора так, чтобы замкнутая система стала точечно вырожденной в направлениях, отвечающих фазовым компонентам исходной (разомкнутой) системы. Для этого на начальном этапе исходная система обратной связью приводится к системе запаздывающего типа с одним входом. Далее для полученного объекта строится динамический регулятор, обеспечивающий вырождение соответствующих фазовых компонент.

    Предложенная процедура построения управляющего воздействия базируется на алгебраических свойствах оператора сдвига и не предполагает вычисления корней характеристического квазиполинома исходной системы. Возможно ее использование для обеспечения замкнутой системе не только полного успокоения, но и экспоненциальной устойчивости. Однако в последнем случае возникает необходимость использовать динамические регуляторы с обратной связью по состоянию интегрального типа.

    Metel'skii A.V., Khartovskii V.E., Urban O.I.
    Calming the solution of systems of neutral type with many delays using feedback, pp. 40-51

    This paper examines the following problem: a linear autonomous differential-difference system of neutral type with delay in state requires ensuring its complete calming by feedback. To solve this problem linear autonomous dynamic differential-difference controller with state feedback is proposed; this controller does not exclude a closed system from the original class of linear autonomous systems of neutral type. Sufficient condition for the existence of such a controller coincides with the criterion of complete controllability. In addition, the closed system has a finite spectrum, which simplifies greatly the problem of calculating the current state during the technical implementation of the controller. The basic idea of research is to select parameters for the controller so that the closed system becomes point-degenerated in directions corresponding to phase components of the original (open) system. To do this, the original system is first converted via feedback to the single-input system of retarded type. Further, for the resulting object the dynamic controller that provides the degeneracy of the corresponding phase components is constructed.

    The proposed procedure for constructing the control action is based on the algebraic properties of shift operator and does not involve calculating the roots of characteristic quasipolynomial of the original system. It can be used to provide full calming as well as exponential stability to a closed system. However, in the latter case it is necessary to use dynamic controller with state feedback of integral type.

  3. Для конфликтно-управляемой динамической системы, описываемой функционально-дифференциальным уравнением нейтрального типа в форме Дж. Хейла, рассматривается дифференциальная игра с показателем качества, который оценивает историю движения, реализующуюся к терминальному моменту времени, а также включает интегральную оценку реализаций управлений игроков. Игра формализуется в классе чистых позиционных стратегий. На основе понятия коинвариантных производных для функционала цены этой игры выписывается функциональное уравнение Гамильтона-Якоби. Доказывается, во-первых, что решение этого уравнения, удовлетворяющее определенным условиям гладкости, является ценой исходной дифференциальной игры, а во-вторых, что цена в точках дифференцируемости удовлетворяет выписанному уравнению Гамильтона-Якоби. Таким образом, это уравнение можно трактовать как уравнение Гамильтона-Якоби-Айзекса-Беллмана для систем нейтрального типа.

    For a conflict-controlled dynamical system described by functional differential equations of neutral type in Hale’s form, we consider a differential game with a quality index that estimates the motion history realized up to the terminal time and includes an integral estimation of realizations of players’ controls. The game is formalized in the class of pure positional strategies. Based on a coinvariant derivatives conception we derive a Hamilton–Jacobi functional equation. It is proved, firstly, that the solution of this equation, satisfying certain conditions of smoothness, is the value of the initial differential game, and secondly, that value at points of differentiability satisfies the considered Hamilton–Jacobi equation. Thus this equation can be interpreted as the Hamilton-Jacobi-Isaacs-Bellman equation for neutral type systems.

  4. Рассматривается задача управления линейной системой нейтрального типа с импульсными ограничениями. Кроме того, предполагается заданной система промежуточных условий. Исследуется постановка, в которой допускается исчезающе малое ослабление упомянутых ограничений. В этой связи область достижимости (ОД) в фиксированный момент окончания процесса заменяется естественным асимптотическим аналогом — множеством притяжения (МП). Для построения последнего используется конструкция расширения в классе конечно-аддитивных (к.-а.) мер, используемых в качестве обобщенных управлений. Показано, что МП совпадает с ОД системы в классе обобщенных управлений – к.-а. мер. Исследуется структура упомянутого МП.

    The problem of control of a linear system of neutral type with impulse constraints is developed. In addition, a given system of intermediate conditions is assumed. A setting is investigated in which a vanishingly small relaxation of the mentioned restrictions is allowed. In this regard, the attainability domain (AD) at a fixed time of the end of the process is replaced by a natural asymptotic analog, the attraction set (AS). To construct the latter, we use the construction of an extension in the class of finitely additive (f.-a.) measures used as generalized controls. It is shown that the AS coincides with the AD of the system in the class of generalized controls – f.-a. measures. The structure of the mentioned AS is investigated.

  5. Рассматривается гамильтониан Боголюбова – де Жена, возмущенный малым потенциалом, описывающий квазичастицы вида «электрон плюс дырка», в частности андреевские локализованные состояния (АЛС) в одномерной сверхпроводящей структуре при наличии примеси. Интерес к упомянутым квазичастицам резко возрос в последние 15-20 лет благодаря открытию в топологических сверхпроводниках майорановских локализованных состояний (МЛС). МЛС представляют собой устойчивые к внешним воздействиям нейтральные квазичастицы с нулевой энергией, весьма перспективные для будущего использования в квантовых вычислениях. Исследование возникновения и поведения, в зависимости от параметров системы и топологической фазы, АЛС, описываемых собственными функциями гамильтониана Боголюбова – де Жена, интересно как с математической точки зрения, в сравнении с обычным оператором Шрёдингера, так и с физической, поскольку может прояснить предпосылки возникновения МЛС в топологически нетривиальной фазе и майораноподобных состояний (часто играющих роль МЛС) в топологически тривиальной фазе. Изучение рассеяния интересно тем, что вероятность прохождения квазичастицы через потенциальный барьер пропорциональна кондактансу, который можно измерить в эксперименте, что в принципе дает возможность связать величину кондактанса с наличием АЛС. В статье найдены условия возникновения собственных значений (энергий квазичастиц) в сверхпроводящей щели, имеющейся в непрерывном спектре гамильтониана, а также их зависимость от параметров как в топологически нетривиальной, так и в топологически тривиальной фазах. Кроме того, исследована задача рассеяния для энергий вблизи границы щели; в частности, найдена вероятность прохождения квазичастицы через потенциальный барьер как функция от параметров системы.

    We consider the Bogolyubov – de Gennes Hamiltonian perturbed by a small potential, which describes quasiparticles of electron-hole type, in particular, Andreev bound states (ABSs) in a one-dimensional superconducting structure in the presence of an impurity. In the last 15-20 years, interest in such quasiparticles has increased sharply due to the discovery of Majorana bound states (MBSs) in topological superconductors. MBSs are neutral zero-energy quasiparticles resistant to external influences, which are very promising for future use in quantum computing. The study of the appearance and behavior, depending on the system parameters and the topological phase, of ABSs described by the eigenfunctions of the Bogolyubov – de Gennes Hamiltonian, is interesting both from a mathematical point of view, in comparison with the usual Schrödinger operator, and from a physical point of view, since it can clarify prerequisites for the occurrence of MBSs in the topologically nontrivial phase and marjoram-like states (often playing the role of MBSs) in the topologically trivial phase. The study of scattering is interesting due to the fact that the probability of a quasiparticle transmission through a potential barrier is proportional to the conductance, that can be measured experimentally, which in principle makes it possible to relate the conductance to the presence of ABS. In the paper, the conditions for the appearance of eigenvalues (energies of quasiparticles) in the superconducting gap in the continuous spectrum of the Hamiltonian, as well as their dependence on the parameters in both the topological nontrivial and topologically trivial phases, are found. In addition, the scattering problem for energies near the edge of the gap has been investigated, in particular, the probability of a quasiparticle transmission through a potential barrier as a function of system parameters has been found.

  6. В статье для линейных автономных вполне регулярных дифференциально-алгебраических систем с многими соизмеримыми запаздываниями проведено исследование задачи оценки решения по результатам наблюдаемого выхода. Исследуемый класс вполне регулярных дифференциально-алгебраических систем с запаздыванием включает в себя классы линейных систем запаздывающего и нейтрального типов, кроме того, к вполне регулярным системам сводится анализ непрерывно-дискретных систем. Для линейных автономных вполне регулярных дифференциально-алгебраических систем с многими соизмеримыми запаздываниями определено свойство асимптотической наблюдаемости, характеризующееся тем, что все решения, порождающие один и тот же выходной сигнал, неразличимы в будущем. Сформулированы и доказаны условия асимптотической наблюдаемости, выраженные через параметры исходной системы. Для асимптотически наблюдаемых систем предложена процедура оценки решения, реализация которой состоит из следующих действий. Сначала, с использованием наблюдаемого выхода, в соответствие исходной системе ставится линейная автономная неоднородная асимптотически наблюдаемая система запаздывающего типа с неоднородной частью, зависящей он выхода. При этом решение новой системы однозначно определяет решение исходной системы. Затем строится преобразование, приводящее матрицы системы запаздывающего типа к определенному виду. После этого при помощи конечной цепочки наблюдателей осуществляется оценка решения. Результаты представленного исследования применимы к системам, которые не обладают свойством финальной наблюдаемости, что позволяет при моделировании соответствующих объектов реального мира существенно снизить требования к органам наблюдения.

    In the article, a problem of solution estimation for linear autonomous completely regular differential-algebraic systems with many commensurate delays is investigated. The class of completely regular differential-algebraic systems with delay under study includes the classes of linear systems of delayed and neutral types; in addition, the analysis of continuous-discrete systems is reduced to completely regular systems. For linear autonomous completely regular differential-algebraic systems with many commensurate delays, the property of asymptotic observability is determined, which are characterized by the fact that all solutions generating the same output signal are indistinguishable in the future. Conditions for asymptotic observability expressed in terms of the parameters of the original system are formulated and proved. For asymptotically observable systems, a solution estimation procedure is proposed, the implementation of which consists of the following steps. First, using the observed output, a linear autonomous non-homogeneous asymptotically observable retarded type system with a non-homogeneous part depending on the output is put in correspondence with the original system. The solution of the new system uniquely determines the solution of the original system. Then a transformation is constructed that reduces the matrices of the retarded type system to a certain form. After that, with the help of a finite chain of observers, the solution is evaluated. The results of the presented study are applicable to systems that do not have the property of final observability, which makes it possible to significantly reduce the requirements for observing organs when modeling the corresponding objects of the real world.

  7. Для линейных автономных систем нейтрального типа с одним запаздыванием в состоянии разработан метод построения линейных дифференциально-разностных регуляторов с обратной связью, обеспечивающих модальную управляемость. При этом отдельно выделены случаи непрерывного и абсолютно непрерывного решений. Предложено обобщение этих результатов на системы указанного типа с многими соизмеримыми запаздываниями.

    Khartovskii V.E., Pavlovskaya A.T.
    To the problem of modal control for linear systems of neutral type, pp. 146-155

    For linear autonomous systems of neutral type with one delay in the state, we develop the method of construction of linear difference-differential feedback controls that ensure modal controllability. In this case, we distinguish the cases of continuous and absolutely continuous solutions. The generalization of these results to a system of this type with multiple commensurate delays is suggested.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref