Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе изучается хаотическая динамика неголономной модели кельтского камня. Показано, что при определенных значениях параметров, характеризующих геометрические и физические свойства камня, в модели наблюдается странный аттрактор лоренцевского типа, для которого также исследованы этапы его возникновения и разрушения.
We study chaotic dynamics in a nonholonomic model of celtic stone. We show that, for certain values of parameters characterizing geometrical and physical properties of the stone, a strange Lorenz-like attractor is observed in the model. We study certain steps of appearance and break-down of this attractor.
-
Сани Чаплыгина с движущейся точечной массой, с. 583-589Неголономные механические системы возникают во многих задачах, имеющих практическое значение. Известной моделью в неголономной механике являются сани Чаплыгина. Сани Чаплыгина представляют собой твердое тело, опирающееся на поверхность острым невесомым колесом. Острый край колеса препятствует скольжению в направлении, перпендикулярном его плоскости. В данной работе рассмотрены сани Чаплыгина с изменяющимся со временем распределением масс, которое возникает за счет движения точки в поперечном относительно плоскости лезвия направлении. Получены уравнения движения, среди которых отделяется замкнутая система уравнений с периодическими по времени коэффициентами, описывающая эволюцию поступательной и угловой скорости саней. Показано, что если проекция центра масс всей системы на ось вдоль лезвия равна нулю, тогда поступательная скорость саней возрастает. При этом траектория точки контакта, как правило, является неограниченной.
A Chaplygin sleigh with a moving point mass, pp. 583-589Nonholonomic mechanical systems arise in the context of many problems of practical significance. A famous model in nonholonomic mechanics is the Chaplygin sleigh. The Chaplygin sleigh is a rigid body with a sharp weightless wheel in contact with the (supporting) surface. The sharp edge of the wheel prevents the wheel from sliding in the direction perpendicular to its plane. This paper is concerned with a Chaplygin sleigh with time-varying mass distribution, which arises due to the motion of a point in the direction transverse to the plane of the knife edge. Equations of motion are obtained from which a closed system of equations with time-periodic coefficients decouples. This system governs the evolution of the translational and angular velocities of the sleigh. It is shown that if the projection of the center of mass of the whole system onto the axis along the knife edge is zero, the translational velocity of the sleigh increases. The trajectory of the point of contact is, as a rule, unbounded.
-
Влияние эффектов Барнетта-Лондона и Эйнштейна-де Гааза на движение неголономной сферы Рауса, с. 583-598Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.
Influence of Bartnett-London and Einstein-de Haas effects on the motion of the nonholonomic sphere of Routh, pp. 583-598We consider the rolling of an unbalanced dynamically symmetric ball along a plane without slipping in the presence of an external magnetic field. We assume that the ball may be wholly or partially composed of dielectric, ferromagnetic, or superconducting materials. According to the existing phenomenological theory, in this case, when studying the dynamics of a ball, it is required to take into account the Lorentz force moment, Barnett-London moment, and Einstein-de Haas moment. Within the framework of this mathematical model, we obtain the conditions for the existence of integrals of motion, which allow us to reduce the integration of equations of motion to a quadrature similar to the Lagrange quadrature for a heavy rigid body.
-
В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.
кватернионы, программное управление, неголономная связь, геометрическая динамика, плавное движение, сферо-роботThis paper deals with the problem of program control of the motion of a dynamically asymmetric balanced ball on the plane using three flywheel motors, provided that the ball rolls without slipping. The center of mass of the mechanical system coincides with the geometric center of the ball. Control laws are found to ensure the motion of the ball along the basic trajectories (line and circle), as well as along an arbitrarily given piecewise smooth trajectory on the plane. In this paper, we propose a quaternion model of ball motion. The model does not require using the traditional trigonometric functions. Kinematic equations are written in the form of linear differential equations eliminating the disadvantages associated with the use of Euler angles. The solution of the problem is carried out using the quaternion function of time, which is determined by the type of trajectory and the law of motion of the point of contact of the ball with the plane. An example of ball motion control is given and a visualization of the ball-flywheel system motion in a computer algebra package is presented.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.