Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'nonlinear effects':
Найдено статей: 8
  1. Статья посвящена исследованию эффективности применения технологии параллельных вычислений на многопроцессорных системах с общей памятью для задач приближенного расчета множеств достижимости нелинейных управляемых систем в конечномерном евклидовом пространстве. В рамках исследования предложен параллельный алгоритм приближенного построения множеств достижимости, основанный на пошаговой вычислительной схеме с использованием узлов «кубических» сеток для аппроксимации множеств. Предложенный алгоритм предназначен для проведения расчетов на ЭВМ архитектуры SMP и решает вопросы разделения задачи на отдельные подзадачи, синхронизации работы параллельных частей алгоритма и равномерного распределения нагрузки между процессорами. Численное моделирование примеров на ЭВМ с двумя 4-ядерными процессорами с использованием предложенного в статье параллельного алгоритма показало высокую эффективность применения технологии параллельных вычислений для расчета множеств достижимости сеточными методами.

    The paper investigates the effectiveness of shared memory parallel programming approach for constructing approximate attainable sets of nonlinear control systems in a finite-dimensional Euclidean space. In this study, we propose a parallel iterative algorithm for constructing approximate attainable sets employing a regular Cartesian grid for spatial discretization. The proposed algorithm has been designed for implementation on SMP systems and handles such issues as data decomposition, threads synchronization and distribution of work between multiple threads. Numerical experiments on a system with two quad-core processors confirmed a high efficiency of shared memory parallel programming approach for applying grid-based methods to construct approximate attainable sets.

  2. В этой статье мы предлагаем новый метод численной аппроксимации для решения единственного решения нелинейного интегро-дифференциального уравнения Вольтерра. Нас интересует особая форма этого уравнения, в которой производная искомого решения появляется под знаком интеграла нелинейным образом. Наше видение основано на двух разных подходах: мы используем метод Нистрёма для преобразования интеграла в конечную сумму, используя формулу численного интегрирования, затем мы используем метод численной обратной разностной производной для приближения к производной нашего решения. Такое сопоставление двух разных методов, первого результата численной обработки интегральных уравнений и второго результата численной обработки дифференциальных уравнений, дает новую нелинейную систему для приближения к решению нашего уравнения. Мы показываем, что система имеет единственное решение и что это численное решение идеально сходится к нашему решению. Раздел посвящен численным тестам, в которых мы показываем эффективность нашего нового видения по сравнению с двумя методами, основанными только на численном интегрировании.

    Guebbai H., Lemita S., Segni S., Merchela W.
    Difference derivative for an integro-differential nonlinear Volterra equation, pp. 176-188

    In this article, we propose a new numerical approximation method to deal with the unique solution of the nonlinear integro-differential Volterra equation. We are interested in a very particular form of this equation, in which the derivative of the sought solution appears under the integral sign in a nonlinear manner. Our vision is based on two different approaches: We use the Nyström method to transform the integral into a finite sum using a numerical integration formula, then we use the numerical backward difference derivative method to approach the derivative of our solution. This collocation between two different methods, the first outcome of the numerical processing of integral equations and the second outcome of the numerical processing of differential equations, gives a new nonlinear system for approaching the solution of our equation. We show that the system has a unique solution and that this numerical solution converges perfectly to our solution. A section is dedicated to numerical tests, in which we show the effectiveness of our new vision compared to two methods based only on numerical integration.

  3. Изучается задача о воздействии двухчастотных квазипериодических возмущений на системы, близкие к произвольным нелинейным двумерным гамильтоновым в случае, когда соответствующие возмущенные автономные системы имеют двойной предельный цикл. Ее решение имеет важное значение как для теории синхронизации колебаний, так и для теории бифуркаций динамических систем. В случае соизмеримости собственной частоты невозмущенной системы с частотами квазипериодического возмущения имеет место резонанс. Выводятся усредненные системы, позволяющие установить структуру резонансной зоны, то есть описать поведение решений в окрестностях индивидуальных резонансных уровней. Исследование этих систем позволяет установить возможные бифуркации, возникающие при отклонении резонансного уровня от уровня невозмущенной системы, порождающего двойной предельный цикл в возмущенной автономной системе. Полученные теоретические результаты применяются при исследовании двухчастотного квазипериодически возмущенного уравнения маятникового типа и иллюстрируются при помощи численных вычислений.

    The problem of the effect of two-frequency quasi-periodic perturbations on systems close to arbitrary nonlinear two-dimensional Hamiltonian ones is studied in the case when the corresponding perturbed autonomous systems have a double limit cycle. Its solution is important both for the theory of synchronization of nonlinear oscillations and for the theory of bifurcations of dynamical systems. In the case of commensurability of the natural frequency of the unperturbed system with frequencies of quasi-periodic perturbation, resonance occurs. Averaged systems are derived that make it possible to ascertain the structure of the resonance zone, that is, to describe the behavior of solutions in the neighborhood of individual resonance levels. The study of these systems allows determining possible bifurcations arising when the resonance level deviates from the level of the unperturbed system, which generates a double limit cycle in a perturbed autonomous system. The theoretical results obtained are applied in the study of a two-frequency quasi-periodic perturbed pendulum-type equation and are illustrated by numerical computations.

  4. В статье предложена численная методика, основанная на методе конечных разностей, для приближенного решения нелокальной краевой задачи второго порядка для обыкновенных дифференциальных уравнений. Ясно, что мост, построенный с двумя опорными точками в каждой конечной точке, приводит к стандартному двухточечному локальному граничному условию, а мост, созданный с помощью многоточечных опор, соответствует многоточечному граничному условию. В то же время, если нелокальные граничные условия могут быть установлены вблизи каждой конечной точки многоточечного опорного моста, возникает двухточечное нелокальное граничное условие. Результаты расчетов для нелинейной модельной задачи представлены для проверки предложенной идеи. Проанализировано влияние изменения параметров на сходимость предложенного метода.

    In the article a numerical technique based on the finite difference method is proposed for the approximate solution of a second order nonlocal boundary value problem for ordinary differential equations. It is clear that a bridge designed with two support points at each end point leads to a standard two-point local boundary value condition, and a bridge contrived with multi-point supports corresponds to a multi-point boundary value condition. At the same time if non-local boundary conditions can be set up near each endpoint of a multi-point support bridge, a two-point nonlocal boundary condition arises. The computational results for the nonlinear model problem are presented to validate the proposed idea. The effect of parameters variation on the convergence of the proposed method is analyzed.

  5. Разработаны математические модели и сформулирована нелинейная краевая задача динамики тонкостенных оболочечных конструкций произвольной формы под действием ударного импульсного нагружения. Приводятся результаты моделирования нелинейных волновых процессов в составной оболочечной конструкции под действием взрыва.

    Mathematical models were developed and the nonlinear boundary value problem of dynamics thinwalled shells of the arbitrary form under action shock pulse is formulated. Dependence of processes of deformation on speed loading, compressibility of a material, finite deformations and large displacements of a shell middle surface, formation and kinetic of plasticity zones of a material during action of a shock wave are considered. Parameterization of a shell surface is carried out by bi-cubic splines. For the description of nonlinear, time and speed dependents of a shell material behavior with anisotropic hardening the generalized model of microplasticity is developed on the account of viscosity of deformation, hysteresis losses and Baushinger's effect. The solution of boundary value problems on the basis of difference schemes is constructed. Results of modeling of nonlinear wave processes in a assemble shell under action of explosion also are presented.

  6. Рассмотрена нелинейная задача о волнах на свободной поверхности двухфазной среды. Для ее решения предложен асимптотический метод, с помощью которого найдено решение с точностью третьего приближения. Определены траектории частиц несущей и дисперсной фазы, а также нелинейные волновые эффекты.

    Barinov V.A., Basinsky K.J.
    Nonlinear waves on the free surface a two-phase medium, pp. 130-139

    We consider the nonlinear problem of waves on the surface of a two-phase medium. To solve this problem we suggest an asymptotic method by which a solution is found within the third approximation. The trajectories of the particles by the carrier and dispersed phase, and nonlinear wave effects are defined.

  7. Рассмотрена нелинейная задача о распространении волн по свободной поверхности слоя вязкой несжимаемой жидкости бесконечной глубины в плоском случае. С помощью метода малого параметра данная нелинейная задача раскладывается на задачи в первых двух приближениях, которые последовательно разрешаются. Получены нелинейные выражения для компонент вектора скорости, динамического давления и формы свободной поверхности. Изучается движение частиц вязкой жидкости, вызванное распространением волны по свободной поверхности. Установлено, что вязкость жидкости оказывает существенное влияние на форму траекторий жидких частиц, которое проявляется как в уменьшении амплитуды колебаний с течением времени, так и в отличии траекторий вблизи свободной поверхности и при заглублении. Исследован нелинейный эффект Стокса, который заключается в наличии приповерхностного течения.

    The paper deals with the nonlinear problem of wave propagation on a free surface of an infinitely deep layer of viscous incompressible fluid on a plane. Using the method of a small parameter, this nonlinear problem is decomposed into problems at the first two approximations which are solved one by one. Nonlinear expressions for the components of a velocity vector, the dynamic pressure and the shape of a free surface are obtained. The motion of viscous fluid particles caused by wave propagation on a free surface is investigated. It is found that the viscosity of a liquid has significant effect on the shape of the trajectories of liquid particles, which is manifested as a decrease in the amplitude of oscillations over time, and in the trajectories dissimilarity near the free surface, and at the deepening. The nonlinear Stokes effect that indicates the presence of near-surface currents is analyzed.

  8. В статье рассматривается возникновение хаотического аттрактора в неунимодальном одномерном отображении, моделирующем динамику популяции. Появление не являющегося переходным хаотического режима происходит без каскада бифуркации. Изменение в поведении модели возникает после обратной касательной бифуркации. C биологической точки зрения эффект интерпретируется резким включением дополнительных факторов смертности для поколения на определенном этапе. Разработанная модель описывает волнообразную зависимость запаса и пополнения при воспроизводстве отдельных видов рыб, наблюдавшуюся в естественной среде.

    Article considers arising of chaotic attractor for notunimodal one-dimensional map, which is a model of pupulation dynamics. Chaotic mode, which is not transient behavior spring up without cascade of bifurcation. Change in behaviour of the map appears as a consequence of backward tangent bifurcation. In the biological view effect is interpreted by sudden inclusion of mortality rate for generation on appointed stage. The new model describes the wave-like dependency of the stock and recruitment existed for real fish population.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref