Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'nonlocal potential':
Найдено статей: 1
  1. В работе рассматривается трехмерный оператор Шрёдингера для кристаллической пленки с нелокальным потенциалом, представляющим собой сумму оператора умножения на функцию и оператора ранга два («сепарабельного потенциала»), вида $V=W(x)+\lambda _1(\cdot ,\phi _1)\phi _1+\lambda _2(\cdot ,\phi _2)\phi _2$. Здесь функция $W(x)$ экспоненциально убывает по переменной $x_3$, функции $\phi _1(x)$, $\phi _2(x)$ линейно независимы, блоховские по переменным $x_1, \, x_2$ и экспоненциально убывающие по переменной $x_3$. Потенциалы данного рода возникают в теории псевдопотенциала. Под уровнем оператора Шрёдингера понимается его собственное значение или резонанс. Доказаны существование и единственность уровня данного оператора вблизи нуля, получена его асимптотика.

    We consider a three-dimensional Schrödinger operator for a crystal film with a nonlocal potential, which is a sum of an operator of multiplication by a function, and an operator of rank two (“separable potential”) of the form $V=W (x) +\lambda _1(\cdot,\phi _1)\phi _1+\lambda _2(\cdot,\phi _2)\phi _2 $. Here the function $W(x)$ decreases exponentially in the variable $x_3$, the functions $\phi _1(x)$, $\phi _2(x)$ are linearly independent, of Bloch type in the variables $x_1,\,x_2$ and exponentially decreasing in the variable $x_3$. Potentials of this type appear in the pseudopotential theory. A level of the Schrödinger operator is its eigenvalue or resonance. The existence and uniqueness of the level of this operator near zero is proved, and its asymptotics is obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref