Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'parabolic-hyperbolic equation':
Найдено статей: 6
  1. Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.

    In this paper, the unique solvability of the boundary value problems (of a type similar to the Darboux problem and the Tricomi problem) of a loaded third order integro-differential equation with hyperbolic and parabolic-hyperbolic operators is proved by method of integral equations. The problem is similarly reduced to a Volterra integral equation with a shift. Under sufficient conditions for given functions and coefficients the unique solvability is proved for the solution of obtained integral equations.

  2. Доказываются достаточные условия поточечной управляемости по нелинейному функционалу для нелинейных распределенных систем, допускающих представление в виде вольтеррова функционально-операторного уравнения в лебеговом пространстве, на заданном множестве D конечномерных аппроксимаций управления. Определяется множество глобальной разрешимости Ω как множество всех управлений из D, для каждого из которых уравнение имеет единственное глобальное решение. В качестве вспомогательного результата, представляющего самостоятельный интерес, доказывается, что при сделанных предположениях выполняется равенство Ω = D. Сведение управляемых распределенных систем к изучаемому функционально-операторному уравнению иллюстрируется на двух примерах: первой краевой задачи для параболического уравнения второго порядка и смешанной задачи для гиперболического уравнения второго порядка; и то, и другое уравнение достаточно общего вида.

    For nonlinear distributed systems representable as a Volterra functional operator equation in a Lebesgue space, sufficient conditions for pointwise controllability with respect to a nonlinear functional are proved. The controls are assumed to belong to a given set D of piecewise constant vector functions id est can be regarded as discretized controls. For the equation under study we define the set Ω of global solvability as the set of all admissible controls for which the equation has a global solution. As an auxiliary result having a separate interest, we also establish under our hypotheses the equality Ω = D. The reduction of controlled distributed systems to the functional operator equation under study is illustrated by two examples, namely a Dirichlet boundary value problem for a second order parabolic equation and a mixed boundary value problem for a second order hyperbolic equation; both equations of a rather general form.

  3. В работе исследуются нелокальные краевые задачи со смещением и разрывными условиями сопряжения на линии изменения типа для модельного нагруженного уравнения смешанного гиперболо-параболического типа. В параболической области уравнение представляет собой уравнение дробной диффузии, в гиперболической - характеристически нагруженное волновое уравнение. Единственность решения исследуемых задач при определенных условиях на коэффициенты задачи доказывается методом Трикоми. Существование решения задач сводится к решению интегрального уравнения Фредгольма второго рода относительно следа искомого решения на линии изменения типа. Однозначная разрешимость интегрального уравнения следует из единственности решения задач. После решения интегрального уравнения решение задач сводится к решению первой краевой задачи для уравнения дробной диффузии в параболической области и решению задачи Коши для неоднородного волнового уравнения в гиперболической. Выписаны формулы представления решений исследуемых задач в параболической и гиперболической областях.

    The paper deals with non-local boundary-value problems with shift and discontinuous conjugation conditions in the line of type changing for a model loaded hyperbolic-parabolic type equation. The parabolic domain presents a fractional diffusion equation while the hyperbolic one presents a characteristically loaded wave equation. The uniqueness of the solution to the considered problems under certain conditions on the coefficients is proved by the Tricomi method. The existence of the solution involves solving the Fredholm integral equation of the second kind with respect to the trace of the sought solution in the line of type changing. The unique solvability of the integral equation implies the uniqueness of the solution to the problems. Once the integral equation is solved, the solution to the problems is reduced to solving the first boundary value problem for the fractional diffusion equation in the parabolic domain and the Cauchy problem for the inhomogeneous wave equation in the hyperbolic one. In addition, representation formulas are written out for solving the problems under study in the parabolic and hyperbolic domains.

  4. Натия Н., Амуля Смырна Ч.
    Бесконечные сети Шрёдингера, с. 640-650

    Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.

    Nathiya N., Amulya Smyrna C.
    Infinite Schrödinger networks, pp. 640-650

    Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.

  5. В статье рассмотрено параболо-гиперболическое уравнение с сингулярным коэффициентом и спектральным параметром в области, состоящей из характеристического треугольника и полуполосы. Сформулирована задача с нелокальным условием, связывающим значения искомой функции в точках двух граничных характеристик и линии изменения типа уравнения с помощью двух операторов, один из которых зависит от коэффициента сингулярности, а другой — от спектрального параметра. Поставленная задача исследована сведением ее к системе уравнений относительно следа искомой функции и еe производной по $x$ на линии изменения типа уравнения. Единственность решения доказана с использованием метода интегралов энергии, при этом использованы интегральные представления гамма-функции Эйлера и функции Бесселя первого рода. Существование решения задачи доказано методом интегральных уравнений, при этом поставленная задача эквивалентно сведена к интегральному уравнению Фредгольма второго рода, разрешимость которого следует из единственности решения задачи. Выявлены достаточные условия, которые обеспечивают однозначную разрешимость поставленной задачи.

    In the paper, a parabolic-hyperbolic equation with a singular coefficient and a spectral parameter in the domain which consists of a characteristic triangle and a half strip has been considered. A nonlocal problem connecting the values of the desired function at the two points of boundary characteristics and the line of equation type changing by means of two operators, the first of which depends on the coefficient of the singularity and the second one - on the spectral parameters, is formulated. The considered problem is investigated by reducing it to the system of equations in the trace of the desired function and its derivative with respect to $x$ on the line of equation type changing. The uniqueness of the solution is proved by the method of energy integrals, for this we use integral representations of Euler gamma-function and Bessel function of the first kind. The existence of the solution is proved by the method of integral equations, for this we equivalently reduce the considered problem to the Fredholm integral equation of the second kind which solvability follows from the uniqueness of the problem solution. Sufficient conditions for unique solvability of the considered problem are found.

  6. Низовцева И.Г., Галенко П.К., Александров Д.В., Вихарев С.В., Сухачёв И.С.
    Бегущие волны в профиле фазового поля: точные аналитические решения гиперболического уравнения Аллена-Кана, с. 245-257

    Для нахождения решений гиперболического уравнения Аллена-Кана использован метод первого интеграла, который следует из известной теоремы Гильберта о нулях. Получены точные аналитические решения в виде бегущей волны, определяющие полный класс решений гиперболического уравнения Аллена-Кана. Показано, что в этом классе существует два подкласса решений: подкласс непрерывных решений и подкласс разрывных решений с сингулярностью в начале координат. Такая неединственность решений ставит вопрос об устойчивом аттракторе, то есть о решении бегущей волны, к которому будут стремиться нестационарные состояния, определяемые гиперболическим уравнением Аллена-Кана. Найденные решения включают в себя как частный случай полученные ранее решения для параболического уравнения Аллена-Кана в виде конечного числа $\tanh$-функций.

    Nizovtseva I.G., Galenko P.K., Alexandrov D.V., Vikharev S.V., Sukhachev I.S.
    Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen-Cahn equation, pp. 245-257

    To obtain solutions of the hyperbolic Allen-Cahn equation, the first integral method, which follows from well-known Hilbert Null-theorem, is used. Exact analytical solutions are obtained in a form of traveling waves, which define complete class of the hyperbolic Allen-Cahn equation. It is shown that two subclasses of solutions exist within this complete class. The first subclass exhibits continual solutions and the second subclass is represented by solutions with singularity at the origin of coordinate system. Such non-uniqueness of solutions stands a question about stable attractor, i.e., about the traveling wave to which non-stationary solutions may attract. The obtained solutions include earlier solutions for the parabolic Allen-Cahn equation in a form of finite number of $\tanh$-functions.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref