Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'partial differential equations':
Найдено статей: 21
  1. Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.

    In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.

  2. В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.

    This work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.

  3. Целью работы является получение математической модели движения составной упругой системы. Поиск собственных форм и частот предлагается проводить путем разложения колебаний по формам неподвижных элементов. Это позволяет преобразовать уравнения движения в частных производных в обыкновенные дифференциальные уравнения. Проведено моделирование движения космического аппарата, в состав которого входят упругие элементы большой протяженности (панели солнечных батарей).

    Borisov M.V., Avramenko А.А.
    Modelling of motion of the spacecraft with elastic elements, pp. 17-28

    The purpose of the article is receiption of mathematical model of motion of the complex elastic system. The normal modes and frequencies are searched by decomposition of vibrations on the modes of stationary elements of the system. It allows one to transform partial differential equations of motion in ordinary differential equations. The motion of a space craft which consists of elastic large size elements (solar panels) is modeled.

  4. В работе рассматривается краевая задача для нелинейного эволюционного уравнения в частных производных, приведенная в перенормированном виде. Данная краевая задача возникает в механике роторных систем и описывает поперечные колебания вращающегося ротора постоянного сечения из вязкоупругого материала, концы которого шарнирно закреплены. Изучен вопрос об устойчивости нулевого состояния равновесия, найдено критическое значение скорости вращения ротора, при превышении которого возникают незатухающие колебания. Найдены точные решения изучаемой краевой задачи в виде одномодовых по пространственной переменной и периодической по времени функций. Выведены условия устойчивости таких решений, а также в ряде случаев дан анализ условий устойчивости. В работе показано отсутствие многомодовых периодических по времени решений. Проанализированы базовые, но важные с прикладной точки зрения частные случаи данной нелинейной краевой задачи. Все результаты анализа нелинейной краевой задачи носят аналитический характер. Их вывод опирается на качественную теорию бесконечномерных динамических систем.

    We consider a boundary-value problem for the nonlinear evolution partial differential equation, given in renormalized form. This problem appears in rotary system mechanics and describes the transverse vibrations of the rotating rotor of a constant cross-section from a viscoelastic material whose ends are pivotally fixed. The question of the stability of the zero equilibrium state is studied, the critical value of the rotor speed is found, above which continuous oscillations occur. Exact solutions of the boundary-value problem are found in the form of single-mode functions with respect to the spatial variable and functions periodic in time. The stability conditions for such solutions are derived, and in some cases an analysis of the stability conditions is given. The paper shows the absence of multimode time-periodic solutions. The basic and important (from an applied point of view) particular cases of this nonlinear boundary-value problem are analyzed. All the results of the analysis of a nonlinear boundary-value problem are analytical. Their conclusion is based on the qualitative theory of infinite-dimensional dynamical systems.

  5. В работе рассматривается проблема интегрирования переопределенной системы дифференциальных уравнений, соответствующей частично-инвариантному решению кубического уравнения Шредингера.

    Neshchadim M.V., Chupakhin A.P.
    Partial invariant solutions of the cubic Schrödinger equation, pp. 35-41

    In this paper we consider a question of integration of the over determined system of partial differential equations which correspond to the partial invariant solution (factor system L3,1) of the cubic Schrödinger equation.

  6. Рассмотрен альтернативный способ описания реакционно-диффузионных систем химической кинетики  на основе обыкновенных дифференциальных уравнений. В рамках данного подхода учёт диффузии вещества и переноса тепла в модели осуществляется без перехода к частным производным, а только за счёт увеличения количества переменных и аддитивных поправок в исходные уравнения. При этом в качестве базовой модели химической кинетики для данной работы была выбрана модель, лишённая недостатков классических моделей химической кинетики, таких как несогласованность уравнений по размерности или масштабу.

    An alternative way for describing reaction-diffusion systems of chemical kinetics on the basis of ordinary differential equations is considered in this paper. Under this approach, diffusion of matter and heat transfer in the model are taken into account without going to the partial derivatives, but only by increasing the number of variables and the addition of corrective coefficients in the original equations. As a base model of chemical kinetics was chosen the one, in which there was no such drawbacks of classical models, as the inconsistency of the equations on the dimension or scale.

  7. Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.

    We study the problem of small motions of an ideal stratified fluid with a free surface, partially covered with elastic ice. Elastic ice is modeled by an elastic plate. The problem is studied on the basis of an approach connected with application of the so-called operator matrices theory. To this end we introduce Hilbert spaces and some of their subspaces as well as auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this basis, we find sufficient conditions for the existence of a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the hydrosystem.

  8. Группой симметрии данного дифференциального уравнения называется группа преобразований, которые переводят решения уравнения в решения. Если известны инфинитезимальные образующие группы симметрий, то мы можем находить инвариантные решения относительно этой группы. Для систем уравнений с частными производным группу симметрий можно использовать, чтобы явно найти частные типы решений, которые сами являются инвариантными относительно некоторой подгруппы полной группы симметрий системы. Например, решения уравнения с частными производными от двух независимых переменных, инвариантные относительно заданной однопараметрической группы симметрий, находятся решением системы обыкновенных дифференциальных уравнений. Класс инвариантных относительно группы решений включает в себя точные решения, имеющие непосредственное математическое или физическое значения. В работе с помощью известных инфинитезимальных образующих некоторых групп симметрий двумерного уравнения теплопроводности найдены решения, инвариантные относительно этих групп. Сначала рассматривается двумерное уравнение теплопроводности с источником тепловыделения (с источником теплопоглощения), которое описывает процесс распространения тепла на плоской области. Для этого случая найдено семейство точных решений, зависящее от произвольных постоянных. Затем найдены инвариантные решения уравнения теплопроводности без источника тепла и без источника поглощения.

    The symmetry group of a given differential equation is the group of transformations that translate the solutions of the equation into solutions. If the infinitesimal generators of symmetry groups are known, then we can find solutions that are invariant under this group. For systems of partial differential equations, the symmetry group can be used to explicitly find particular types of solutions that are themselves invariant under a certain subgroup of the full symmetry group of the system. For example, solutions of an equation with partial derivatives of two independent variables, invariant under a given one-parameter symmetry group, are found by solving a system of ordinary differential equations. The class of solutions that are invariant with respect to a group includes many exact solutions that have immediate mathematical or physical meaning. In this paper, using the well-known infinitesimal generators of some symmetry groups of the two-dimensional heat conduction equation, solutions are found that are invariant with respect to these groups. First we consider the two-dimensional heat conduction equation with a source that describes the process of heat propagation in a flat region. For this case, a family of exact solutions was found, depending on an arbitrary constant. Then invariant solutions of the two-dimensional heat conduction equation without source are found.

  9. Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.

    Let $U$ be the set of admissible controls, $T>0$, and let $W[0;\tau]$, $\tau\in(0;T]$, be a scale of Banach spaces such that the set of restrictions of functions from $W=W[0;T]$ to $[0;\tau]$ coincides with $W[0;\tau]$; let $F[.;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. Earlier, for the operator equation $x=F[x;u]$, $x\in W$, the author introduced a comparison system in the form of a functional integral equation in the space $\mathbf{C}[0;T]$. It was established that to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation, it is sufficient to preserve the global solvability of the specified comparison system, and the corresponding sufficient conditions were established. In this paper, further examples of application of this theory are considered: nonlinear wave equation, strongly nonlinear wave equation, nonlinear heat equation, strongly nonlinear parabolic equation.

  10. В работе рассматривается модель химической кинетики, для которой вывод уравнений не опирается на закон действующих масс, а строится на основе таких принципов, как геометрическая вероятность, а также совместная вероятность для двух событий. Для этой модели строится обобщение на случай реакции-диффузии в гетерогенной среде, а также учитывается конвекционный и диффузионный перенос тепловой энергии. Построение данного обобщения проводится по альтернативной методике на основе систем обыкновенных дифференциальных уравнений и без перехода к частным производным. По своему описанию этот подход близок к методу конечных объемов, но в отличие от него для описания диффузии применяются статистические упрощения и принцип геометрической вероятности. Подобный альтернативный вариант позволяет значительно упростить численную реализацию итоговой модели, а также упростить ее качественный анализ методами теории динамических систем. Помимо этого, также значительно повышается эффективность параллельной реализации численного метода для итоговой модели. Дополнительно к этому мы также рассмотрим приложение модели для описания эталонного примера кинетики с квазипериодическим режимом, а также рассмотрим алгоритм перевода стандартных моделей с размерными кинетическими константами к ее формализму.

    The paper considers a model of chemical kinetics for which the derivation of equations does not rely on the law of mass action, but is rather based on such principles as geometric probability and joint probability. For this model a generalization is constructed for the case of reaction-diffusion systems in heterogeneous medium, with respect to the convective and diffusive transfer of heat. The construction of this generalization is carried out by an alternative methodology, which is based fully on systems of ordinary differential equations, without a transition to partial derivatives. The description of this new method is a bit similar to the finite volume method, except that it uses statistical simplifying positions and geometric probability to describe diffusion processes. Such approach allows us to greatly simplify the numerical implementation of the resulting model, as well as to simplify its quantitative analysis by dynamical systems theory methods. Moreover, the efficiency of parallel implementation of the numerical method is increased for the resulting model. In addition, the author considers an application of this model for the description of some example reaction with quasi-periodic regime, as well as an algorithm for the transition from standard models with dimensional kinetic constants to its formalism.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref