Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'small parameter method':
Найдено статей: 20
  1. Изучается начально-краевая задача для многомерного псевдопараболического уравнения с переменными коэффициентами и граничными условиями третьего рода. Многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром. Показано, что при стремлении малого параметра к нулю решение полученной модифицированной задачи сходится к решению исходной задачи. Для приближенного решения полученной задачи строится локально-одномерная разностная схема А. А. Самарского. Методом энергетических неравенств получена априорная оценка, откуда следуют единственность, устойчивость и сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи. Для двумерной задачи построен алгоритм численного решения начально-краевой задачи для псевдопараболического уравнения с условиями третьего рода.

    We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.

  2. Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.

    The work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.

  3. В ограниченной по переменной $z$ области, имеющей слабо горизонтальную неоднородность, исследуется задача определения сверточного ядра $k(t,x)$, $t>0$, $x\in {\Bbb R}$, входящего в гиперболическое интегро-дифференциальное уравнение второго порядка. Предполагается, что это ядро слабо зависит от переменной $x$ и разлагается в степенной ряд по степеням малого параметра $\varepsilon$. Построен метод нахождения первых двух коэффициентов $k_{0}(t)$, $k_{1}(t)$ этого разложения по заданным первым двум моментам по переменной $x$ решения прямой задачи при $z=0$.

    The problem of determining the convolutional kernel $k(t,x)$, $t>0$, $x \in {\Bbb R}$, included in a hyperbolic integro-differential equation of the second order, is investigated in a domain bounded by a variable $z$ and having weakly horizontal heterogeneity. It is assumed that this kernel weakly depends on the variable $x$ and decomposes into a power series by degrees of a small parameter $\varepsilon$. A method for finding the first two coefficients $k_{0}(t)$, $k_{1}(t)$ of this expansion is constructed according to the given first two moments in the variable $x$ of the solution of the direct problem at $z=0$.

  4. В статье исследуются асимптотические поведения решений сингулярно возмущенных двухточечных краевых задач на отрезке. Объектом исследования является линейное неоднородное обыкновенное дифференциальное уравнение второго порядка с малым параметром при старшей производной искомой функций. Особенности рассматриваемых задач состоят в том, что малый параметр находится при старшей производной искомой функций и соответствующее невозмущенное дифференциальное уравнение первого порядка имеет иррегулярную особую точку на левом конце отрезка. На концах отрезка ставятся краевые условия. Рассматриваются две задачи, в одном функция перед первой производной искомой функций не положительна на рассматриваемом отрезке, а во втором не отрицательна. Асимптотические разложения задач строятся классическим методом пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Однако напрямую этот метод применить невозможно, так как внешнее решение имеет особенность. Мы сначала убираем эту особенность из внешнего решения, затем применяем метод пограничных функций. Построенные асимптотические разложения обоснованы с помощью принципа максимума, т.е. получены оценки для остаточных функций.

    This article studies the asymptotic behavior of the solutions of singularly perturbed two-point boundary value-problems on an interval. The object of the study is a linear inhomogeneous ordinary differential second-order equation with a small parameter with the highest derivative of the unknown function. The special feature of the problem is that the small parameter is found at the highest derivative of the unknown function and the corresponding unperturbed first-order differential equation has an irregular singular point at the left end of the segment. At the ends of the segment, boundary conditions are imposed. Two problems are considered: in one of them the function in front of the first derivative of the unknown function is nonpositive on the segment considered, and in the second it is nonnegative. Asymptotic expansions of the problems are constructed by the classical method of Vishik-Lyusternik-Vasilyeva-Imanaliev boundary functions. However, this method cannot be applied directly, since the external solution has a singularity. We first remove this singularity from the external solution, and then apply the method of boundary functions. The constructed asymptotic expansions are substantiated using the maximum principle, i.e., estimates for the residual functions are obtained.

  5. Метод малого параметра Пуанкаре активно применяется в небесной механике, а также в теории дифференциальных уравнений и в ее важном разделе — оптимальном управлении. В предлагаемой статье данный метод используется для построения явного вида равновесия по Нэшу и Бержу в дифференциальной позиционной игре с малым влиянием одного из игроков на скорость изменения фазового вектора.

    The Poincaré small parameter method is actively used in celestial mechanics, as well as in the theory of differential equations and in its important section called optimal control. In this paper, the mentioned method is used to construct an explicit form of Nash and Berge equilibrium in a differential positional game with a small influence of one of the players on the rate of change of the state vector.

  6. Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.

    We study the long-time evolution of axisymmetric free-surface two-layered creeping flow subject to the initial topography of its boundaries and bottom velocities. Each layer has uniform density and viscosity. The upper layer is assumed to have a smaller density than the lower layer. Based on lubrication approximation (the Reynolds equations) the nonlinear system of diffusion-type equations with respect to the surface and interface between the layers is obtained to describe this flow. Taking the dimensionless density contrast between the layers as a small parameter, we apply the method of asymptotic expansions to extract leading-term approximation for the slowly varying large-time evolution of the governing equations. An asymptotic equation relating both surface and interface displacement to the bottom velocities is derived. Based on this equation, we develop the algorithm to calculate velocity fields within layers for large time. Streamlines are used to visualize the flow. Numerical results reveal stability of the streamlines in the upper layer under variation of the bottom velocity. As geophysical applications, the developed algorithm is used to evaluate the velocity field in the crust (the upper layer) beneath the large-scale lunar multi-ring basins influenced by deep movements in the underlying mantle (the lower layer). To validate the results of modeling, we compare the calculated velocity fields with basin ridge systems obtained by experimental observations. The model comparison has shown proximity of radii of basin rings and critical points of the surface velocity.

  7. На примере известной задачи о прокладке трассы изучаются возможности численного решения сосредоточенных задач оптимального управления методом параметризации управления с помощью линейной комбинации $\mu$ функций Гаусса. Напомним, что функция Гаусса (называемая также квадратичной экспонентой) - это функция вида $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\exp\left[-\dfrac{(x-m)^2}{2\sigma^2}\right]$. Основу метода составляет сведение исходной бесконечномерной задачи оптимизации к конечномерной задаче минимизации целевого функционала по параметрам аппроксимации управления с последующим применением численных методов конечномерной оптимизации. Данная статья опирается на исследование, проведенное автором ранее и касавшееся возможностей аппроксимации функций одного переменного на конечном отрезке линейной комбинацией функций Гаусса, и является его непосредственным продолжением. Прежде всего, мы доказываем утверждение об аппроксимации на любом конечном отрезке материнского вейвлета «мексиканская шляпа» линейной комбинацией двух квадратичных экспонент. Отсюда получаем теоретическое обоснование возможности эффективной аппроксимации функций одного переменного на любом конечном отрезке линейными комбинациями функций Гаусса. После этого мы проводим сравнение качества аппроксимации указанного вида с аппроксимацией по Котельникову на базе численных экспериментов. Затем приводится постановка задачи о прокладке трассы, а также результаты ее численного решения при различных способах параметризации управления, наглядно демонстрирующие преимущества предлагаемого способа, в частности устойчивость численного решения к погрешности вычисления параметров аппроксимации оптимального управления даже при использовании малого количества этих параметров.

    On the example of well known problem of a road construction we study the opportunities of numerical solution for lumped optimal control problems by the method of control parametrization with the help of a linear combination of $\mu$ Gaussian functions. Recall that a Gaussian function (named also as quadratic exponent) is one defined as follows $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\exp\left[-\dfrac{(x-m)^2}{2\sigma^2}\right]$. The method is based on reduction of an original infinite dimensional optimization problem to finite dimensional minimization problem of a cost functional with respect to control approximation parameters. This paper is guided by the former author's research concerned the opportunities of approximation of one variable functions on a finite segment by a linear combination of $\mu$ Gaussian functions, and is to be regarded as its direct continuation. First of all, we prove an assertion concerning approximation on any finite segment for mother wavelet Mexican hat by a linear combination of two Gaussian functions. Hence, we obtain theoretical justification of the opportunity of an effective approximation for one variable functions on any finite segment with the help of linear combinations of Gaussian functions. After that, we give a comparison by quality of the approximation under study with the approximation in the style of Kotelnikov by means of numerical experiments. Then we give the road construction problem formulation and also the results of numerical solution for this problem which demonstrate obviously the advantages of our approach, in particular, a stability of numerical solution with respect to evaluation error of the approximation parameters for an optimal control, even with usage of small count of such parameters.

  8. Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового типа, близкого к интегрируемому стандартному уравнению математического маятника. Для автономного уравнения решается проблема предельных циклов, которая сводится к исследованию порождающих функций Пуанкаре-Понтрягина. Строится разбиение плоскости параметров на области с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивидуальных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналитического метода Мельникова и численного моделирования изучаются основные бифуркации неавтономного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожденного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими бифуркационными границами.

    Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré-Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.

  9. Потапов И.И., Потапов Д.И., Королёва К.С.
    О движении речного потока в сечении изогнутого русла, с. 577-593

    На закруглениях речного русла формируются вторичные поперечные течения. В зависимости от геометрии русла вторичных течений в створе может быть несколько, и они могут иметь различный масштаб. Даже малое вторичное поперечное течение влияет на параметры гидродинамического потока и это влияние необходимо учитывать при моделировании русловых процессов и исследовании береговых деформаций русла. Трехмерное моделирование таких разномасштабных процессов требует больших вычислительных затрат и на текущий момент возможно только для небольших модельных каналов. Поэтому для исследования береговых процессов в данной работе предложена модель пониженной размерности. Выполненная редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости–вихрь–функция тока. В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данного поля скорости должно быть определено из решения вспомогательных задач или получено из данных натурных или экспериментальных измерений. Для численного решения сформулированной задачи используется метод конечных элементов в формулировке Петрова–Галеркина. В работе получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений с известными экспериментальными данными. Погрешности численных результатов авторы связывают с необходимостью более точного определения радиальной компоненты поля скорости в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и более точного определения граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I., Koroleva K.S.
    On the river flow motion in the bend channel cross-section, pp. 577-593

    At the river bed curves, secondary flow normal to the main flow direction are formed. Depending on the channel geometry, there may be several secondary flows in the cross-section, and they may have different scales. Even a small secondary cross-section flow affects the parameters of the hydrodynamic flow and this influence must be taken into account when modeling riverbed processes and researching coast deformations of the channel. Three-dimensional modeling of such multi-scale processes requires large computational costs and is currently possible only for small model channels. Therefore, a reduced-dimensional model is proposed in this paper to study coastal processes. The performed reduction of the problem from a three-dimensional model of river flow motion to a two-dimensional one in the plane of the channel cross-section assumes that the hydrodynamic flow is quasi-stationary and the hypotheses on the asymptotic behavior of the flow along the flow coordinate are fulfilled for it. Taking into account these limitations, a mathematical model of the problem of a stationary turbulent calm river flow in a channel cross-section is formulated in this work. The problem is formulated in a mixed velocity–vortex–stream function formulation. Specifying of the boundary conditions on the flow free surface for the velocity field determined in the normal and tangential directions to the cross-section axis is required as additional conditions for the problem reduction. It is assumed that the values of this velocity field should be determined from the solution of auxiliary problems or obtained from data of natural or experimental measurements.

    The finite element method in the Petrov–Galerkin formulation is used for the numerical solution of the formulated problem. A discrete analog of the problem is obtained and an algorithm for its solution is proposed. The performed numerical studies showed generally good agreement between the obtained solutions and the known experimental data. The authors associate the errors in the numerical results with the need for a more accurate determination of the radial component of the velocity field in the cross-section by selecting and calibrating a more suitable model for turbulent viscosity calculating and a more accurate determination of the boundary conditions on the cross-section free boundary.

  10. Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.

     

    The axisymmetric model based on the Stokes equations is proposed to investigate the multi-ring pattern formation in two-layer creeping flow with variable thickness of layers. Each layer has uniform density and viscosity. The upper layer is lighter than the lower layer. The flow is generated by both surface and interface geometry. The effect of surface tension is supposed to be negligible. We apply the method of multiple scales to obtain the governing equations describing instability in the form of wave in the flow. Using the Fourier-Laplace method, we analyze the small-amplitude leading behavior of the instability. The asymptotic study reveals that this kind of instability manifests itself as axisymmetric wave which length is comparable with layer thickness; moreover, layer thicknesses play a major role in spatial distribution of wave extrema. The other model parameters alter mostly the wave amplitude. The equation relating extrema distribution to layer thicknesses is derived. We apply the obtained results to study a ring spacing rule observed for most multi-ring basins on the Moon. Using parameters of some lunar multi-ring basins we calculate the consecutive crest radii of the unstable wave and compare the results of simulation with the measured ring radii.

     

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref