Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'stable bridge':
Найдено статей: 5
  1. Ухоботов В.И., Зайцева О.В.
    Об одной задаче импульсной встречи, с. 42-45

    Рассматривается игровая задача импульсной встречи в заданный момент времени, в случае когда первый игрок выбирает группу импульсных управлений, на выбор каждого из которых в процессе управления можно потратить свое заданное количество ресурсов. На выбор управления второго игрока накладывается геометрическое ограничение. Найдены достаточные условия возможности окончания игры из заданного начального состояния и построены соответствующие импульсные управления.

    Ukhobotov V.I., Zaytseva O.V.
    About one problem of a pulse meeting, pp. 42-45

    We consider the game problem of a pulse meeting in the given moment of time, in the case when the first player chooses group of pulse managements, for choice of each of which it is possible to spend the set quantity of resources in control process. On choice of control of the second player geometrical restriction is imposed. Sufficient conditions of possibility of the termination of game from preset start state are found and corresponding pulse controls are constructed.

  2. Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.

    We consider a linear differential game with the fixed end time $p$. Attainability domains of players are $n$-dimensional balls. The terminal set of a game is determined by a condition for assigning the norm of a phase vector to a segment with positive ends. A set defined by this condition is named in the article as ring. The fact that the terminal set is not convex required an additional theory allowing us to calculate Minkowski sum and difference for a ring and a ball in $n$-dimensional space. Control of the first player has a pulse constraint. Abilities of the first player are determined by the stock of resources that can be used by the player at formation of his control. At certain moments of time the separation of a part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, thereby complicating the problem. Control of the second player has geometrical constraints. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. The maximal stable bridge leading at fixed time to the terminal set has been constructed. A stable bridge is determined by the functions of internal and external radii, which are calculated explicitly.

  3. Рассматривается задача управления с заданным моментом окончания, в которой вектограммы управления и помехи зависят линейно от заданных выпуклых компактов. Задано многозначное отображение фазового пространства задачи управления в линейное нормированное пространство $E$. Цель построения управления заключается в том, чтобы в момент окончания процесса управления фиксированный вектор пространства $E$ принадлежал образу многозначного отображения при любой допустимой реализации помехи. Стабильный мост определяется в терминах многозначных функций. Приводимая процедура строит по заданной многозначной функции, являющейся стабильным мостом, управление, которое решает поставленную задачу. Получены явные формулы, которые определяют стабильный мост в рассматриваемой задаче управления. Найдены условия, при выполнении которых построенный стабильный мост будет максимальным. К рассмотренной задаче управления с помехой можно свести некоторые задачи группового преследования. В статье приводится такой пример.

    A control problem with a given end time is considered, in which the control vectograms and disturbance depend linearly on the given convex compact sets. A multivalued mapping of the phase space of the control problem to the linear normed space $E$ is given. The goal of constructing a control is that at the end of the control process the fixed vector of the space $E$ belongs to the image of the multivalued mapping for any admissible realization of the disturbance. A stable bridge is defined in terms of multivalued functions. The presented procedure constructs, according to a given multivalued function which is a stable bridge, a control that solves the problem. Explicit formulas are obtained that determine a stable bridge in the considered control problem. Conditions are found under which the constructed stable bridge is maximal. Some problems of group pursuit can be reduced to the considered control problem with disturbance. The article provides such an example.

  4. Рассматривается линейная дифференциальная игра с импульсным управлением первого игрока. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым задача усложняется. Управление второго игрока стеснено геометрическими ограничениями. Вектограммы игроков описываются одним и тем же шаром с разными радиусами, зависящими от времени. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. С помощью максимального стабильного моста, определенного авторами ранее, построены оптимальные управления игроков.

    We consider a linear differential game with a pulse control of the first player. The abilities of the first player are determined by the stock of resources that the player can use when forming his control. At certain instants of time a separation of part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, resulting in the complication of the problem. The control of the second player has geometrical constraints. The vectograms of the players are described by the same ball with different time-dependent radii. The terminal set of the game is determined by the condition of belonging the norm of a phase vector to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. With the maximal stable bridge, which has been defined by the authors previously, optimal controls of players are constructed.

  5. Ушаков В.Н., Матвийчук А.Р., Лебедев П.Д.
    Дефект стабильности в игровой задаче о сближении в момент, с. 87-103

    Работа посвящена изучению множеств в пространстве позиций игровой задачи о сближении, не обладающих, вообще говоря, свойством стабильности. Изучается введённое ранее авторами понятие дефекта стабильности. В представленных в работе примерах строятся с использованием  понятия дефекта стабильности множества в пространстве позиций, имеющие довольно простую геометрию, и экстремальное прицеливание на которые обеспечивает первому игроку приведение движения конфликтно управляемой системы в малую окрестность целевого множества.

    Ushakov V.N., Matviychuk A.R., Lebedev P.D.
    Defect of stability in game-pursuit problem, pp. 87-103

    The article is about the sets in the phase space of a game-pursuit problem, which are not stable  in general. Conception of the stability defect is researched. The sets with simple geometry are constructed based on the stability defect, the extremal aiming on them provides the achieving  of the goal set neighborhood  for the first player.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref