Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'system of linear inequalities':
Найдено статей: 7
  1. Работа посвящена исследованию свойства интегральной разделенности линейных систем с дискретным временем. Согласно определению система $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ называется системой с интегральной разделенностью, если она имеет фундаментальную систему решений $x^1(\cdot),\ldots,x^n(\cdot)$ такую, что при некоторых $\gamma>0$, $a>1$ и всех натуральных $m>s$, $i\leqslant n-1$ выполнены неравенства $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ Понятие интегральной разделенности систем с непрерывным временем было введено Б.Ф. Быловым в 1965 году. Доказаны критерии интегральной разделенности систем с дискретным временем: приводимость к диагональному виду с интегрально разделенной диагональю; устойчивость и некратность показателей Ляпунова. Подробно исследовано также свойство диагонализируемости систем с дискретным временем. Доказательства учитывают специфику этих систем.

    Banshchikova I.N., Popova S.N.
    On the property of integral separation of discrete-time systems, pp. 481-498

    This paper is devoted to the study of the property of an integral separation of discrete time-varying linear systems. By definition, the system $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ is called a system with integral separation if it has a basis of solutions $x^1(\cdot),\ldots,x^n(\cdot)$ such that for some $\gamma>0$, $a>1$ and all natural $m>s$, $i\leqslant n-1$ the inequalities $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ are satisfied. The concept of integral separation of systems with continuous time was introduced by B.F. Bylov in 1965. The criteria for the integral separation of systems with discrete time are proved: reducibility to diagonal form with an integrally separated diagonal; stability and nonmultiplicity of Lyapunov exponents. The property of diagonalizability of discrete-time systems is also studied in detail. The evidence takes into account the specifics of these systems.

  2. Рассматривается дискретная линейная однородная система

    $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n, \qquad\qquad (1)$$

    с вполне ограниченной матрицей $A(\cdot)$ и полным спектром показателей Ляпунова $\lambda_1(A)\leqslant\ldots\leqslant\lambda_n(A)$. Показатели Ляпунова системы (1) называются устойчивыми, если для любого $\varepsilon>0$ найдется такое $\delta>0$, что для всякой вполне ограниченной на $\mathbb N$ $n\times n$-матрицы $R(\cdot)$, удовлетворяющей оценке $\sup_{m\in\mathbb N}\|R(m)-E\|<\delta$, для полного спектра показателей Ляпунова $\lambda_1(AR)\leqslant\ldots\leqslant\lambda_n(AR)$ возмущенной системы

    $$z(m+1)=A(m)R(m)z(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,$$

    справедливо неравенство $\max_{j=1,\ldots,n}|\lambda_j(A)-\lambda_j(AR)|<\varepsilon$. В работе построен пример системы вида (1) с неустойчивыми показателями Ляпунова.

    We consider a discrete time-varying linear system

    $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,\qquad\qquad (1)$$

    where $A(\cdot)$ is completely bounded on $\mathbb N$, i.e., $\sup_{m\in\mathbb N}\bigl(\|A(m)\|+\|A^{-1}(m)\|\bigr)<\infty$. Let $\lambda_1(A)\leqslant\ldots\leqslant\lambda_n(A)$ be the Lyapunov spectrum of the system (1). It is called stable if for any $\varepsilon>0$ there exists a $\delta>0$ such that for every completely bounded $n\times n$-matrix $R(\cdot)$, $\sup_{m\in\mathbb N}\|R(m)-E\|<\delta$, the inequality $$\max_{j=1,\ldots,n}|\lambda_j(A)-\lambda_j(AR)|<\varepsilon $$ holds. We construct an example of the system (1) with unstable Lyapunov spectrum.

  3. Золотых Н.Ю., Кубарев В.К., Лялин С.С.
    Метод двойного описания над полем алгебраических чисел, с. 161-175

    Рассматривается задача построения вершинного описания выпуклого полиэдра, заданного как множество решений некоторой системы линейных неравенств, коэффициенты которой являются алгебраическими числами. Обратная задача эквивалентна (двойственна) исходной. Предлагаются программные реализации нескольких модификаций хорошо известного метода двойного описания (метода Моцкина-Бургера), решающего поставленную задачу. Рассматривается два случая: 1) элементы системы неравенств - произвольные алгебраические числа, при этом каждое такое число задается минимальным многочленом и локализующим интервалом; 2) элементы системы неравенств принадлежат заданному конечному расширению ${\mathbb Q} (\alpha)$ поля ${\mathbb Q}$, при этом для $\alpha$ задаются минимальный многочлен и локализующий интервал, а все элементы исходной системы, конечные и промежуточные результаты представлены как многочлены от $\alpha$. Как и ожидалось, программная реализация для второго варианта значительно превосходит реализацию для первого варианта по производительности. Для большего ускорения во втором случае предлагается использовать булевы матрицы вместо матриц невязок. Результаты вычислительного эксперимента показывают, что программные реализации вполне пригодны для решения задач умеренных размеров.

    Zolotykh N.Y., Kubarev V.K., Lyalin S.S.
    Double description method over the field of algebraic numbers, pp. 161-175

    We consider the problem of constructing the dual representation of a convex polyhedron defined as a set of solutions to a system of linear inequalities with coefficients which are algebraic numbers. The inverse problem is equivalent (dual) to the initial problem. We propose program implementations of several variations of the well-known double description method (Motzkin-Burger method) solving this problem. The following two cases are considered: 1) the elements of the system of inequalities are arbitrary algebraic numbers, and each such number is represented by its minimal polynomial and a localizing interval; 2) the elements of the system belong to a given extension ${\mathbb Q} (\alpha)$ of ${\mathbb Q}$, and the minimal polynomial and the localizing interval are given only for $\alpha$, all elements of the system, intermediate and final results are represented as polynomials of $\alpha$. As expected, the program implementation for the second case significantly outperforms the implementation for the first one in terms of speed. In the second case, for greater acceleration, we suggest using a Boolean matrix instead of the discrepancy matrix. The results of a computational experiment show that the program is quite suitable for solving medium-scale problems.

  4. Исследовано свойство равномерной полной управляемости (по Калману) линейной управляемой системы с дискретным временем

    $$x(t+1)=A(t)x(t)+B(t)u(t), \quad t\in\mathbb{N}_0, \quad (x,u)\in\mathbb{R}^n\times\mathbb{R}^m. \qquad(1)$$

    Установлено, что если система $(1)$ равномерно вполне управляема, то матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$ (т.е. $\sup_{t\in\mathbb{N}_0}(|A(t)|+|A^{-1}(t)|)<+\infty$), а матрица $B(\cdot)$ ограничена на $\mathbb{N}_0$. Доказано, что система $(1)$ равномерно вполне управляема тогда и только тогда, когда при некотором $\vartheta\in \mathbb N$ при всех $\tau\in\mathbb N_0$ для матриц

    $$W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(t,s+1)B(s)B^*(s)X^*(t,s+1),\quad$$

      $$W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1)$$

    выполнены неравенства $\alpha_1 I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1 I$, $\alpha_2 I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2 I$ с некоторыми положительными $\alpha_i$ и $\beta_i$. На основании этого утверждения доказан критерий равномерной полной управляемости системы $(1)$, аналогичный критерию Тонкова равномерной полной управляемости систем с непрерывным временем: система $(1)$ $\vartheta$-равномерно вполне управляема тогда и только тогда, когда матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$; матрица $B(\cdot)$ ограничена на $\mathbb N_0$; существует число $\ell=\ell(\vartheta)>0$ такое, что для любого $\tau\in\mathbb{N}_0$ и для любого $x_1\in\mathbb{R}^n$ существует управление $u(t)$, $t\in[\tau,\tau+\vartheta)$, которое переводит решение системы $(1)$ из точки $x(\tau)=0$ в точку $x(\tau+\vartheta)=x_1$ при этом выполнено неравенство $|u(t)|\leqslant \ell |x_1|$, $t\in[\tau,\tau+\vartheta)$.

     

    We study the property of uniform complete controllability (according to Kalman) for a discrete-time linear control system

    $$x(t+1)=A(t)x(t)+B(t)u(t), \quad t\in\mathbb{N}_0, \quad (x,u)\in\mathbb{R}^n\times\mathbb{R}^m. \qquad(1)$$

    We prove that if the system $(1)$ is uniformly completely controllable, then the matrix $A(\cdot)$ is completely bounded on $\mathbb N_0$ (i.e. $\sup_{t\in\mathbb{N}_0}(|A(t)|+|A^{-1}(t)|)<+\infty$) and the matrix $B(\cdot)$ is bounded on $\mathbb N_0$. We prove that the system $(1)$ is uniformly completely controllable if and only if there exists a $\vartheta\in \mathbb N$ such that for all $\tau\in\mathbb N_0$ the inequalities $\alpha_1 I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1 I$, $\alpha_2 I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2 I$ hold for some positive $\alpha_i$ and $\beta_i$, where

    $$W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(t,s+1)B(s)B^*(s)X^*(t,s+1),\quad$$

    $$W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1)$$

    On the basis of this statement, we prove the following criterion for uniform complete controllability of the system $(1)$, which is similar to the Tonkov criterion of uniform complete controllability for continuous-time systems: the system $(1)$ is $\vartheta$-uniformly completely controllable if and only if the matrix $A(\cdot)$ is completely bounded on $\mathbb N_0$; the matrix $B(\cdot)$ is bounded on $\mathbb N_0$; there exists an $\ell=\ell(\vartheta)>0$ such that for every $\tau\in\mathbb{N}_0$ and for any $x_1\in\mathbb{R}^n$ there exists a control function $u(t)$, $t\in[\tau,\tau+\vartheta)$, which transfers the solution of the system $(1)$ from the state $x(\tau)=0$ to the state $x(\tau+\vartheta)=x_1$, and the inequality $|u(t)|\leqslant \ell |x_1|$ holds for all $t\in[\tau,\tau+\vartheta)$.

     

  5. Рассматривается линейная нестационарная управляемая система $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ с кусочно-непрерывными и ограниченными $\omega$-периодическими матрицами коэффициентов $A(\cdot)$ и $B(\cdot)$. Управление в системе (1) строится по принципу линейной обратной связи $u=U(t)x$ с кусочно-непрерывной и ограниченной матричной функцией $U(t)$, $t\in \mathbb{R}$. Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы (2) означает существование такой матричной функции $U(t)$, $t\in \mathbb{R}$, которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb{Z}$, $\det H_k>0$. Представленная задача решается в предположении равномерной полной управляемости (в смысле Калмана) системы (1), соответствующей замкнутой системе (2), т.е. при условии существования для системы (1) таких чисел $\sigma>0$ и $\alpha_i>0$, $i=\overline{1,4}$, что при всяких числе $t_0\in\mathbb{R}$ и векторе $\xi\in \mathbb{R}^n$ справедливы неравенства $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ в которых $X(t,s)$ - матрица Коши линейной системы (1) при $u(t)\equiv0.$ Доказано, что свойство равномерной полной управляемости (в смысле Калмана) периодической системы (1) является необходимым и достаточным условием равномерной глобальной достижимости соответствующей системы (2).

    We consider a linear time-varying control system $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ with piecewise continuous and bounded $\omega$-periodic coefficient matrices $A(\cdot)$ and $B(\cdot).$ We construct control of the system (1) as a linear feedback $u=U(t)x$ with piecewise continuous and bounded matrix function $U(t)$, $t\in \mathbb{R}$. For the closed-loop system $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ the conditions of its uniform global attainability are studied. The latest property of the system (2) means existence of matrix $U(t)$, $t\in \mathbb{R}$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb{Z}$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability (by Kalman) of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such numbers $\sigma>0$ and $\alpha_i>0$, $i=\overline{1,4}$, that for any number $t_0\in\mathbb{R}$ and vector $\xi\in \mathbb{R}^n$ the following inequalities hold: $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ where $X(t,s)$ is the state-transition matrix of linear system (1) with $u(t)\equiv0.$ It is proved that the property of uniform complete controllability (by Kalman) of the periodic system (1) is a necessary and sufficient condition of uniform global attainability of the corresponding system (2).

  6. Пусть $n,m,\ell,s\in\mathbb{N}$ - заданные числа, $\Pi\subset\mathbb{R}^n$ - измеримое ограниченное множество, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ - банаховы идеальные пространства измеримых на $\Pi $ функций, $\mathcal{D}\subset\mathcal{U}^{s}$ - выпуклое множество, $\mathcal{A}$ - некоторый класс линейных ограниченных операторов $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. Изучается управляемое функционально-операторное уравнение типа Гаммерштейна: $$ x(t)=\theta(t)+ A\Bigl[f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \qquad \qquad (1) $$ где набор параметров $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ - управляющий; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ - заданная функция, измеримая по $t\in\Pi$, непрерывная по $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ и удовлетворяющая некоторым естественным предположениям. Уравнение $(1)$ является удобной формой описания широкого класса управляемых распределенных систем. Для указанного уравнения доказывается теорема о достаточных условиях глобальной разрешимости для всех $u\in\mathcal{D}$, $A\in\mathcal{A}$ и $\theta$ из поточечно ограниченного множества. Для исходного уравнения определяются мажорантное и минорантное неравенства, получаемые из уравнения $(1)$ оценкой правой части соответственно сверху и снизу. Теорема доказывается при условии глобальной разрешимости мажорантного и минорантного неравенств. В качестве приложения полученных общих результатов доказывается теорема о тотальной (по всему множеству допустимых управлений) глобальной разрешимости смешанной задачи для системы гиперболических уравнений первого порядка с управляемыми старшими коэффициентами.

    Let $n,m,\ell,s\in\mathbb{N}$ be given numbers, $\Pi\subset\mathbb{R}^n$ be a measurable bounded set, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ be Banach ideal spaces of functions measurable on the set $\Pi$, $\mathcal{D}\subset\mathcal{U}^{s}$ be a convex set, $\mathcal{A}$ be some class of linear bounded operators $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. We study the controlled Hammerstein type functional operator equation as follows $$ x(t)=\theta(t)+ A\Bigl[ f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \qquad \qquad (1) $$ where $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ is the set of controlled parameters; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ is a given function measurable with respect to $t\in\Pi$, continuous with respect to $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ and satisfying to certain natural hypotheses. Eq. $(1)$ is a convenient form of representation of the broad class of controlled distributed systems. For the equation under study we prove a theorem concerning sufficient conditions of global solvability for all $u\in\mathcal{D}$, $A\in\mathcal{A}$ and $\theta$ from a pointwise bounded set. For the original equation we define some majorant and minorant inequalities obtaining them from Eq. $(1)$ with the help of upper and lower estimates of the right-hand side. The theorem is proved providing global solvability of the majorant and minorant inequalities. As an application of obtained general results we prove a theorem concerning the total (with respect to the whole set of admissible controls) global solvability of the mixed boundary value problem for a system of hyperbolic equations of the first order with controlled higher coefficients.

  7. Рассматривается регуляризация классических условий оптимальности (КУО) — принципа Лагранжа и принципа максимума Понтрягина — в выпуклой задаче оптимального управлении с функциональными ограничениями типа равенства и неравенства. Управляемая система задается линейным функционально-операторным уравнением второго рода общего вида в пространстве $L^m_2$, основной оператор правой части уравнения предполагается квазинильпотентным. Целевой функционал задачи является сильно выпуклым. Получение регуляризованных КУО в итерационной форме основано на использовании метода итеративной двойственной регуляризации. Основное предназначение получаемых в работе регуляризованных принципа Лагранжа и принципа максимума Понтрягина в итерационной форме — устойчивое генерирование минимизирующих приближенных решений в смысле Дж. Варги. Регуляризованные КУО в итерационной форме формулируются как теоремы существования в исходной задаче минимизирующих приближенных решений. Они «преодолевают» свойства некорректности КУО и являются регуляризирующими алгоритмами для решения оптимизационных задач. В качестве иллюстративного примера рассматривается задача оптимального управления, связанная с гиперболической системой дифференциальных уравнений первого порядка.

    We consider the regularization of the classical optimality conditions (COCs) — the Lagrange principle and the Pontryagin maximum principle — in a convex optimal control problem with functional constraints of equality and inequality type. The system to be controlled is given by a general linear functional-operator equation of the second kind in the space $L^m_2$, the main operator of the right-hand side of the equation is assumed to be quasinilpotent. The objective functional of the problem is strongly convex. Obtaining regularized COCs in iterative form is based on the use of the iterative dual regularization method. The main purpose of the regularized Lagrange principle and the Pontryagin maximum principle obtained in the work in iterative form is stable generation of minimizing approximate solutions in the sense of J. Warga. Regularized COCs in iterative form are formulated as existence theorems in the original problem of minimizing approximate solutions. They “overcome” the ill-posedness properties of the COCs and are regularizing algorithms for solving optimization problems. As an illustrative example, we consider an optimal control problem associated with a hyperbolic system of first-order differential equations.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref