Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Чистые фазы ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка, с. 499-517Изучение фазового перехода является одной из центральных проблем статистической механики. Он происходит, когда для модели существуют по крайней мере две различные меры Гиббса. Известно, что для ферромагнитной модели Поттса с $q$ состояниями при достаточно низких температурах существуют не более $2^{q}-1$ трансляционно-инвариантных расщепленных мер Гиббса. Для непрерывных гамильтонианов меры Гиббса образуют непустое, выпуклое, компактное подмножество в пространстве всех вероятностных мер. Экстремальные меры, которые соответствуют крайним точкам этого множества, определяют чистые фазы. Мы изучаем экстремальность трансляционно-инвариантных расщепленных мер Гиббса для ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка. Мы определяем области, в которых изучаемые трансляционно-инвариантные меры Гиббса для этой модели являются экстремальными или не являются экстремальными. Мы сводим описание мер Гиббса к решению нелинейного функционального уравнения, каждое решение которого соответствует одной предельной мере Гиббса.
Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three, pp. 499-517One of the main issues in statistical mechanics is the phase transition phenomenon. It happens when there are at least two distinct Gibbs measures in the model. It is known that the ferromagnetic Potts model with $q$ states possesses, at sufficiently low temperatures, at most $2^{q}-1$ translation-invariant splitting Gibbs measures. For continuous Hamiltonians, in the space of probability measures, the Gibbs measures form a non-empty, convex, compact set. Extremal measures, which corresponds to the extreme points of this set, determines pure phases. We study the extremality of the translation-invariant splitting Gibbs measures for the ferromagnetic $q$-state Potts model on the Cayley tree of order three. We define the regions where the translation-invariant Gibbs measures for this model are extreme or not. We reduce description of Gibbs measures to solving a non-linear functional equation, each solution of which corresponds to one Gibbs measure.
-
В данной работе рассмотрены две модели взаимодействующих молекул ДНК. Первая — это (четырехпараметрическая) модель слияния пузырьков во взаимодействующих ДНК (сокращенно: СПВ–ДНК). Вторая — это (трехпараметрическая) модель слияния пузырьков в конденсированных молекулах ДНК (сокращенно: СПК–ДНК). Для изучения термодинамики слияния пузырьков этих моделей развит метод статистической физики. А именно, определяется гамильтониан (определяемый функциями) каждой модели и для конкретных функций гамильтониана даны их трансляционно-инвариантные меры Гиббса (ТИМГ). В этой работе выбраны такие функции гамильтониана, что модель имеет вид модели Изинга–SOS. В этом случае для модели СПВ–ДНК найдены такие параметры, что соответствующий гамильтониан имеет до трех ТИМГ (три фазы системы), что биологически означает существование трех состояний: «Нет слияния пузырьков», «Доминирующая мягкая зона», «Слияние пузырьков». Для модели СПК–ДНК показано, что при любых (допустимых) параметрах эта модель тоже имеет до трех ТИМГ, что биологически означает существование трех состояний: «Нет слияния пузырьков», «Доминирующая мягкая зона», «Слияние пузырьков».
In this paper, two models of interacting DNA molecules are considered. The first is a (four-parameter) bubble coalescence model in interacting DNAs (shortly, BCI–DNA). The second is a (three-parameter) bubble coalescence model in a condensed DNA molecules (shortly, BCC–DNA). To study the thermodynamics of bubble fusion of these models, a method of statistical physics is developed. Namely, the Hamiltonian (defined by functions) of each model is determined and for specific functions of the Hamiltonian, their translation-invariant Gibbs measures (TIGM) are given. In this work, such Hamiltonian functions are chosen that the model has the form of the Ising–SOS model. In this case, for the BCI–DNA model, such parameters are found that the corresponding Hamiltonian has up to three TIGMs (three phases of the system), which biologically means the existence of three states: “No bubble coalescence”, “Dominated soft zone”, “Bubble coalescence”. For the BCC–DNA model, it is shown that for any (acceptable) parameters, this model also has up to three TIGMs, which biologically means the existence of three states: “No bubble coalescence”, “Dominated soft zone”, “Bubble coalescence”.
-
В данной работе рассмотрены трансляционно-инвариантные меры Гиббса (ТИМГ) для HC-модели Блюма–Капеля в случае «обобщенный жезл» на дереве Кэли второго порядка. Найдено приближенное критическое значение $\theta_{cr}$ такое, что при $\theta \geq\theta_{cr}$ существует единственная ТИМГ, а при $0<\theta<\theta_{cr}$ существуют ровно три ТИМГ в случае «обобщенный жезл» для рассматриваемой модели. Кроме того, изучена задача (не)экстремальности для этих мер.
дерево Кэли, конфигурация HC-модель Блюма–Капеля, мера Гиббса, трансляционно-инвариантные меры, экстремальность мерыIn this paper, we consider translation-invariant Gibbs measures (TIGM) for the Blume–Capel HC-model in the case of a “generalized wand” on a second-order Cayley tree. An approximate critical value of $\theta_{cr}$ is found such that for $\theta \geq\theta_{cr}$ there is only one TIGM, and for $0<\theta<\theta_{cr}$ there are exactly three TIGMs in the case of “generalized wand” for the model under consideration. In addition, the (non)extreme problem for these measures is studied.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.