Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Чистые фазы ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка, с. 499-517Изучение фазового перехода является одной из центральных проблем статистической механики. Он происходит, когда для модели существуют по крайней мере две различные меры Гиббса. Известно, что для ферромагнитной модели Поттса с $q$ состояниями при достаточно низких температурах существуют не более $2^{q}-1$ трансляционно-инвариантных расщепленных мер Гиббса. Для непрерывных гамильтонианов меры Гиббса образуют непустое, выпуклое, компактное подмножество в пространстве всех вероятностных мер. Экстремальные меры, которые соответствуют крайним точкам этого множества, определяют чистые фазы. Мы изучаем экстремальность трансляционно-инвариантных расщепленных мер Гиббса для ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка. Мы определяем области, в которых изучаемые трансляционно-инвариантные меры Гиббса для этой модели являются экстремальными или не являются экстремальными. Мы сводим описание мер Гиббса к решению нелинейного функционального уравнения, каждое решение которого соответствует одной предельной мере Гиббса.
-
Движение трех точечных вихрей в случае, если один из них проходит через центр завихренности, с. 37-51Изучается движение трех точечных вихрей в случае, если центр завихренности лежит на траектории одного из вихрей или находится достаточно близко от нее. Численно исследованы траектории вихрей в широком диапазоне изменения их интенсивностей. Вычислены асимптотики траекторий вихрей для конфигураций, близких к сингулярной или коллинеарной.
-
В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.
-
Динамика пары точечных вихрей и профиля с параметрическим возбуждением в идеальной жидкости, с. 618-627В данной работе получены уравнения движения пары вихрей и кругового профиля с параметрическим возбуждением, которое возникает за счет периодического движения материальной точки. Подобные плоские задачи, с одной стороны, носят модельный характер и не могут быть использованы для точного количественного описания реальных траекторий системы. С другой стороны, во многих случаях такие модели позволяют получить достаточно точную качественную картину динамики и, вследствие простоты, данные 2D модели позволяют оценить влияние различных параметров. Описаны относительные положения равновесия, обобщающие решения Феппля и коллинеарные конфигурации, в отсутствии движения материальной точки. Показано, что в окрестности относительных равновесий в случае периодического движения центра масс профиля образуется стохастический слой.
-
В данной работе рассмотрены две модели взаимодействующих молекул ДНК. Первая — это (четырехпараметрическая) модель слияния пузырьков во взаимодействующих ДНК (сокращенно: СПВ–ДНК). Вторая — это (трехпараметрическая) модель слияния пузырьков в конденсированных молекулах ДНК (сокращенно: СПК–ДНК). Для изучения термодинамики слияния пузырьков этих моделей развит метод статистической физики. А именно, определяется гамильтониан (определяемый функциями) каждой модели и для конкретных функций гамильтониана даны их трансляционно-инвариантные меры Гиббса (ТИМГ). В этой работе выбраны такие функции гамильтониана, что модель имеет вид модели Изинга–SOS. В этом случае для модели СПВ–ДНК найдены такие параметры, что соответствующий гамильтониан имеет до трех ТИМГ (три фазы системы), что биологически означает существование трех состояний: «Нет слияния пузырьков», «Доминирующая мягкая зона», «Слияние пузырьков». Для модели СПК–ДНК показано, что при любых (допустимых) параметрах эта модель тоже имеет до трех ТИМГ, что биологически означает существование трех состояний: «Нет слияния пузырьков», «Доминирующая мягкая зона», «Слияние пузырьков».
-
Новые стационарные конфигурации в системе трех точечных вихрей в круговой области и их устойчивость, с. 61-70В работе применяется топологический подход для поиска и анализа устойчивости относительных равновесий для системы трех вихрей равной интенсивности в круговой области. Показано, что система трех вихрей допускает редукцию на одну степень свободы. Найдены две новые стационарные конфигурации - равнобедренная и коллинеарная несимметричная, построены бифуркационные диаграммы, проведен анализ устойчивости для этих случаев.
-
В данной работе рассмотрены трансляционно-инвариантные меры Гиббса (ТИМГ) для HC-модели Блюма–Капеля в случае «обобщенный жезл» на дереве Кэли второго порядка. Найдено приближенное критическое значение $\theta_{cr}$ такое, что при $\theta \geq\theta_{cr}$ существует единственная ТИМГ, а при $0<\theta<\theta_{cr}$ существуют ровно три ТИМГ в случае «обобщенный жезл» для рассматриваемой модели. Кроме того, изучена задача (не)экстремальности для этих мер.
-
Для задачи двух точечных вихрей в кольце получено представление гамильтониана через эллиптические функции и исследована устойчивость томсоновской конфигурации.
-
Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.
-
В статье представлены результаты моделирования гидродинамических процессов, происходящих в рабочем пространстве капиллярных вискозиметров постоянного расхода трёх различных конфигураций. Результаты получены путем численного решения уравнений Навье-Стокса для ламинарного течения с использованием метода конечных элементов. Установлено влияние длины капиллярной трубки и формы дна цилиндра на метрологические характеристики вискозиметра.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.