Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'configuration':
Найдено статей: 12
  1. Изучение фазового перехода является одной из центральных проблем статистической механики. Он происходит, когда для модели существуют по крайней мере две различные меры Гиббса. Известно, что для ферромагнитной модели Поттса с $q$ состояниями при достаточно низких температурах существуют не более $2^{q}-1$ трансляционно-инвариантных расщепленных мер Гиббса. Для непрерывных гамильтонианов меры Гиббса образуют непустое, выпуклое, компактное подмножество в пространстве всех вероятностных мер. Экстремальные меры, которые соответствуют крайним точкам этого множества, определяют чистые фазы. Мы изучаем экстремальность трансляционно-инвариантных расщепленных мер Гиббса для ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка. Мы определяем области, в которых изучаемые трансляционно-инвариантные меры Гиббса для этой модели являются экстремальными или не являются экстремальными. Мы сводим описание мер Гиббса к решению нелинейного функционального уравнения, каждое решение которого соответствует одной предельной мере Гиббса.

    One of the main issues in statistical mechanics is the phase transition phenomenon. It happens when there are at least two distinct Gibbs measures in the model. It is known that the ferromagnetic Potts model with $q$ states possesses, at sufficiently low temperatures, at most $2^{q}-1$ translation-invariant splitting Gibbs measures. For continuous Hamiltonians, in the space of probability measures, the Gibbs measures form a non-empty, convex, compact set. Extremal measures, which corresponds to the extreme points of this set, determines pure phases. We study the extremality of the translation-invariant splitting Gibbs measures for the ferromagnetic $q$-state Potts model on the Cayley tree of order three. We define the regions where the translation-invariant Gibbs measures for this model are extreme or not. We reduce description of Gibbs measures to solving a non-linear functional equation, each solution of which corresponds to one Gibbs measure.

  2. В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.

    We consider a system which consists of a circular cylinder subject to gravity interacting with N vortices in a perfect fluid. Generically, the circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. We then focus on the study of a configuration of the Foppl type: a falling cylinder is accompanied with a vortex pair (N=2). Now the circulation about the cylinder is assumed to be zero and the governing equations are considered on a certain invariant manifold. It is shown that, unlike the Foppl configuration, the vortices cannot be in a relative equilibrium. A restricted problem is considered: the cylinder is assumed to be sufficiently massive and thus its falling motion is not affected by the vortices. Both restricted and general problems are studied numerically and remarkable qualitative similarity between the problems is outlined: in most cases, the vortex pair and the cylinder are shown to exhibit scattering.

  3. В данной работе получены уравнения движения пары вихрей и кругового профиля с параметрическим возбуждением, которое возникает за счет периодического движения материальной точки. Подобные плоские задачи, с одной стороны, носят модельный характер и не могут быть использованы для точного количественного описания реальных траекторий системы. С другой стороны, во многих случаях такие модели позволяют получить достаточно точную качественную картину динамики и, вследствие простоты, данные 2D модели позволяют оценить влияние различных параметров. Описаны относительные положения равновесия, обобщающие решения Феппля и коллинеарные конфигурации, в отсутствии движения материальной точки. Показано, что в окрестности относительных равновесий в случае периодического движения центра масс профиля образуется стохастический слой.

    In this paper we obtain equations of motion for a vortex pair and a circular foil with parametric excitation due to the periodic motion of a material point. Undoubtedly, such problems are, on the one hand, model problems and cannot be used for an exact quantitative description of real trajectories of the system. On the other hand, in many cases such 2D models provide a sufficiently accurate qualitative picture of the dynamics and, due to their simplicity, an estimate of the influence of different parameters. We describe relative equilibria that generalize Föppl solutions and collinear configurations when the material point does not move. We show that a stochastic layer forms in the neighborhood of relative equilibria in the case of periodic motion of the foil's center of mass.

  4. В данной работе рассмотрены две модели взаимодействующих молекул ДНК. Первая — это (четырехпараметрическая) модель слияния пузырьков во взаимодействующих ДНК (сокращенно: СПВ–ДНК). Вторая — это (трехпараметрическая) модель слияния пузырьков в конденсированных молекулах ДНК (сокращенно: СПК–ДНК). Для изучения термодинамики слияния пузырьков этих моделей развит метод статистической физики. А именно, определяется гамильтониан (определяемый функциями) каждой модели и для конкретных функций гамильтониана даны их трансляционно-инвариантные меры Гиббса (ТИМГ). В этой работе выбраны такие функции гамильтониана, что модель имеет вид модели Изинга–SOS. В этом случае для модели СПВ–ДНК найдены такие параметры, что соответствующий гамильтониан имеет до трех ТИМГ (три фазы системы), что биологически означает существование трех состояний: «Нет слияния пузырьков», «Доминирующая мягкая зона», «Слияние пузырьков». Для модели СПК–ДНК показано, что при любых (допустимых) параметрах эта модель тоже имеет до трех ТИМГ, что биологически означает существование трех состояний: «Нет слияния пузырьков», «Доминирующая мягкая зона», «Слияние пузырьков».

    In this paper, two models of interacting DNA molecules are considered. The first is a (four-parameter) bubble coalescence model in interacting DNAs (shortly, BCI–DNA). The second is a (three-parameter) bubble coalescence model in a condensed DNA molecules (shortly, BCC–DNA). To study the thermodynamics of bubble fusion of these models, a method of statistical physics is developed. Namely, the Hamiltonian (defined by functions) of each model is determined and for specific functions of the Hamiltonian, their translation-invariant Gibbs measures (TIGM) are given. In this work, such Hamiltonian functions are chosen that the model has the form of the Ising–SOS model. In this case, for the BCI–DNA model, such parameters are found that the corresponding Hamiltonian has up to three TIGMs (three phases of the system), which biologically means the existence of three states: “No bubble coalescence”, “Dominated soft zone”, “Bubble coalescence”. For the BCC–DNA model, it is shown that for any (acceptable) parameters, this model also has up to three TIGMs, which biologically means the existence of three states: “No bubble coalescence”, “Dominated soft zone”, “Bubble coalescence”.

  5. В работе применяется топологический подход для поиска и анализа устойчивости относительных равновесий для системы трех вихрей равной интенсивности в круговой области. Показано, что система трех вихрей допускает редукцию на одну степень свободы. Найдены две новые стационарные конфигурации - равнобедренная и коллинеарная несимметричная, построены бифуркационные диаграммы, проведен анализ устойчивости для этих случаев.

    In this paper, topological approach are used for searching and stability analysis of relative equilibriums for the system of three point vortices of equal in magnitude intensities. It is shown that the system of three point vortices can be reduced by one degree of freedom. We find the two new stationary configurations (isosceles and non-symmetrical collinear), study their bifurcations. The stability analysis is performed for these cases.

  6. В данной работе рассмотрены трансляционно-инвариантные меры Гиббса (ТИМГ) для HC-модели Блюма–Капеля в случае «обобщенный жезл» на дереве Кэли второго порядка. Найдено приближенное критическое значение $\theta_{cr}$ такое, что при $\theta \geq\theta_{cr}$ существует единственная ТИМГ, а при $0<\theta<\theta_{cr}$ существуют ровно три ТИМГ в случае «обобщенный жезл» для рассматриваемой модели. Кроме того, изучена задача (не)экстремальности для этих мер.

    In this paper, we consider translation-invariant Gibbs measures (TIGM) for the Blume–Capel HC-model in the case of a “generalized wand” on a second-order Cayley tree. An approximate critical value of $\theta_{cr}$ is found such that for $\theta \geq\theta_{cr}$ there is only one TIGM, and for $0<\theta<\theta_{cr}$ there are exactly three TIGMs in the case of “generalized wand” for the model under consideration. In addition, the (non)extreme problem for these measures is studied.

  7. Для задачи двух точечных вихрей в кольце получено представление гамильтониана через эллиптические функции и исследована устойчивость томсоновской конфигурации.

    For the system of two point vortices in anulus the Hamiltonian is expressed in terms of elliptic functions. The stability of the Thomson configuration is studied.

  8. Работа посвящена моделированию ползущего движения вязкоупругой жидкости со свободной поверхностью, реализующейся при входе полимерной жидкости в формующий канал и выходе из него.  Движение жидкости описывается  уравнениями сохранения массы, импульса и энергии, дополненное определяющим реологическим уравнением состояния среды Гиезекуса. На основе метода конечных элементов разработан устойчивый численный алгоритм решения задачи. Проведены численные исследования по определению формы выходной струи для различных режимов течения и формы насадки. Исследована картина распределения скоростей жидкости, давления, напряжений и температуры при увеличении степени нагрева стенки формующего канала. Получены численные результаты зависимости эффекта разбухания полимерной жидкости от параметров реологической модели и температурных факторов.

    Numerical simulation flow of viscoelastic fluid with free surface, which is realized in entrance and output flow  in extrusion die was performed. The flow of liquid is described by equations of conservation of mass, momentum and thermal energy with rheological constitutive equation of Giesekesus.  On basis of finite element method the  stable numerical scheme was developed  to solve  this problem. Different numerical experiments was performed to define the configuration of outflow jet  in various regimes and construction of die. The distribution of flow velocity fields, pressure and temperature  are investigated on dependence of heating the walls. The ratio of extrusion in dependence of parameters the rheological model are investigated.

  9. Исследуется система $N$ ротаторов с наложенной связью, заданной условием обращения в ноль суммы косинусов углов поворота. Сформулированы уравнения динамики и приведены результаты численного моделирования для случаев $N=3$, $4$ и $5$, которые отвечают геодезическим потокам на двумерном, трехмерном и четырехмерном многообразии в компактной области (в силу периодичности конфигурационного пространства по угловым переменным). Система из трех ротаторов демонстрирует хаос, характеризуемый наличием одного положительного показателя Ляпунова, а для систем из четырех и пяти элементов имеется, соответственно, два и три положительных показателя (гиперхаос). Реализован алгоритм, позволяющий вычислять секционную кривизну многообразия в ходе численного моделирования динамики в точках траектории. В случае $N=3$ кривизна двумерного многообразия отрицательна (за исключением конечного числа точек, где она нулевая), и реализуется геодезический поток Аносова. Для $N=4$ и $5$ расчеты показывают, что условие отрицательной секционной кривизны не выполнено. Также изложена методика и представлены результаты проверки гиперболичности на основе численного анализа углов между подпространствами векторов малых возмущений, причем в случае $N=3$ гиперболичность подтверждается, а для $N=4$ и $5$ нет.

    A system of $N$ rotators is investigated with a constraint given by the condition of vanishing sum of the cosines of the rotation angles. Equations of the dynamics are formulated and results of numerical simulation for the cases $N=3$, $4$, and $5$ are presented relating to the geodesic flows on a two-dimensional, three-dimensional, and four-dimensional manifold, respectively, in a compact region (due to the periodicity of the configuration space in angular variables). It is shown that a system of three rotators demonstrates chaos, characterized by one positive Lyapunov exponent, and for systems of four and five elements there are, respectively, two and three positive exponents (“hyperchaos”). An algorithm has been implemented that allows calculating the sectional curvature of a manifold in the course of numerical simulation of the dynamics at points of a trajectory. In the case of $N=3$, curvature of the two-dimensional manifold is negative (except for a finite number of points where it is zero), and Anosov's geodesic flow is realized. For $N=4$ and $5$, the computations show that the condition of negative sectional curvature is not fulfilled. Also the methodology is explained and applied for testing hyperbolicity based on numerical analysis of the angles between the subspaces of small perturbation vectors; in the case of $N=3$, the hyperbolicity is confirmed, and for $N=4$ and $5$ the hyperbolicity does not take place.

  10. Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.

    The 2D problem of the movement of a circular cylinder with a variable radius in an ideal, incompressible, heavy fluid is considered. It is assumed that the initial perturbation of the fluid is caused by a vertical and continuous impact of the cylinder semi-submerged in the fluid. The feature of this problem is that under certain conditions (for example, at fast braking of the cylinder or at fast reduction of its radius), there is a separation of the fluid from the body, resulting in the formation of attached cavities near its surface. The forms of the inner free boundaries and the configuration of the external free border are in advance unknown and are subject to definition when the problem is solved. A nonlinear problem with one-sided constraints is formulated, on the basis of which the connectivity of the separation zone and the shape of the free boundaries of the fluid at small times are determined. In the case where the pressure on the external free surface coincides with the pressure in the cavity, an analytical solution of the problem is constructed. To define one of two symmetric points of separation, a transcendental equation containing a full elliptic integral of the first kind and elementary functions is obtained. For the case of cavitational braking of a nondeformable cylinder, an explicit formula for the inner free boundary of the fluid on small times is found. Good agreement of analytical results with direct numerical calculations is shown.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref