Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'uniform complete controllability':
Найдено статей: 10
  1. Рассматривается задача о назначении спектра показателей Ляпунова линейной управляемой системы с дискретным временем $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ посредством линейной по фазовым переменным обратной связи $u(m)=U(m)x(m)$ в малой окрестности спектра показателей свободной системы $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (2)$$ Дополнительно требуется, чтобы норма матрицы обратной связи $U(\cdot)$ удовлетворяла липшицевой оценке по отношению к требуемому смещению показателей. Это свойство называется пропорциональной локальной управляемостью полного спектра показателей Ляпунова замкнутой системы $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ Построен пример, показывающий, что найденные ранее достаточные условия пропорциональной локальной управляемости полного спектра показателей Ляпунова системы (3) (равномерная полная управляемость системы (1) и устойчивость показателей Ляпунова свободной системы (2)) не являются необходимыми.

    We consider a problem of assigning the Lyapunov spectrum for a linear control discrete-time system $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ in a small neighborhood of the Lyapunov spectrum of the free system $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\qquad (2) $$ by means of linear feedback $u(m)=U(m)x(m)$. We assume that the norm of the feedback matrix $U(\cdot)$ satisfies the Lipschitz estimate with respect to the required shift of the Lyapunov spectrum. This property is called proportional local assignability of the Lyapunov spectrum of the closed-loop system $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ We previously proved that uniform complete controllability of system (1) and stability of the Lyapunov spectrum of free system (2) are sufficient conditions for proportional local assignability of the Lyapunov spectrum of closed-loop system (3). In this paper we give an example demonstrating that these conditions are not necessary.

  2. Понятие равномерной полной управляемости линейной системы, введенное Р. Калманом, играет ключевую роль в задачах управления асимптотическими характеристиками линейных систем управления, замкнутых по принципу линейной обратной связи. Е.Л. Тонков установил необходимое и достаточное условие равномерной полной управляемости для систем с кусочно-непрерывными и ограниченными коэффициентами. Критерий Тонкова можно положить в основу определения равномерной полной управляемости. Если условия на коэффициенты системы ослабить, то определения Калмана и Тонкова перестают совпадать. Здесь установлены необходимые условия и достаточные условия равномерной полной управляемости по Калману и по Тонкову для систем с измеримыми, локально суммируемыми коэффициентами. Введено определение равномерной полной управляемости, которое обобщает определение Тонкова и совпадает с определением Калмана, если матрица $B(\cdot)$ ограничена. Доказаны некоторые известные результаты об управляемости линейных систем, в которых можно ослабить требования на коэффициенты. Доказано, что если линейная управляемая система $\dot x=A(t)x+B(t)u$, $x\in\mathbb{R}^n$, $u\in\mathbb{R}^m$, с измеримой ограниченной матрицей $B(\cdot)$ равномерно вполне управляема в смысле Калмана, то для любой измеримой и интегрально ограниченной $m\times n$-матричной функции $Q(\cdot)$ система $\dot x=(A(t)+B(t)Q(t))x+B(t)u$ равномерно вполне управляема по Калману.

    The notion of uniform complete controllability of linear system introduced by R. Kalman plays a key role in problems of control of asymptotic properties for linear systems closed by linear feedback control. E.L. Tonkov has found a necessary and sufficient condition of uniform complete controllability for systems with piecewise continuous and bounded coefficients. The Tonkov criterion can be considered as the definition of uniform complete controllability. If the coefficients of the system satisfy weak conditions then the definitions of Kalman and Tonkov are not coincide. We obtain necessary conditions and sufficient conditions for uniform complete controllability in the sense of Kalman and Tonkov for systems with measurable and locally integrable coefficients. We introduce a new definition of uniform complete controllability that extends the definition of Tonkov and coincides with the definition of Kalman providing the matrix $B(\cdot)$ is bounded. We prove some known results on the controllability of linear systems that allow the weakening of the requirements on the coefficients. We prove that if a linear control system $\dot x=A(t)x+B(t)u$, $x\in\mathbb{R}^n$, $u\in\mathbb{R}^m$, with measurable and bounded matrix $B(\cdot)$ is uniformly completely controllable in the sense of Kalman then for any measurable and integrally bounded $m\times n$-matrix function $Q(\cdot)$ the system $\dot x=(A(t)+B(t)Q(t))x+B(t)u$ is also uniformly completely controllable in the sense of Kalman.

  3. Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).

    We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).

  4. Доказано, что линейная управляемая система $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad\qquad (1) $$ с коэффициентами в форме Хессенберга при достаточно широких условиях на коэффициенты обладает свойством равномерной полной управляемости в смысле Калмана. Показана существенность для некоторых полученных достаточных условий. Установлены следствия для квазидифференциальных уравнений. Исследуется задача о глобальном управлении асимптотическими инвариантами системы $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \qquad \qquad \qquad \qquad (2) $$ полученной замыканием системы $(1)$ обратной связью $u=Ux$. В известных результатах С.Н. Поповой ослабляются условия на коэффициенты. Для системы $(2)$ с коэффициентами в форме Хессенберга, с помощью результатов С.Н. Поповой, получены достаточные условия глобальной скаляризуемости и глобальной управляемости показателей Ляпунова, а в случае когда $A(\cdot)$ и $B(\cdot)$ - $\omega$-периодические и достаточные условия глобальной ляпуновской приводимости.

    We prove that a linear control system $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad \qquad (1) $$ with matrix coefficients of the Hessenberg form is uniformly completely controllable in the sense of Kalman under rather weak conditions imposed on coefficients. It is shown that some obtained sufficient conditions are essential. Corollaries are derived for quasi-differential equations. We construct feedback control $u=Ux$ for the system $(1)$ and study the problem of global control over asymptotic invariants of the closed-loop system $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n. \qquad \qquad \qquad \qquad (2) $$ The conditions on coefficients are weakened in the known results of S.N. Popova. For the system $(2)$ with matrix coefficients of the Hessenberg form, the obtained results and the results of S.N. Popova are used to receive sufficient conditions for global reducibility to systems of scalar type and for global control over Lyapunov exponents and moreover, for global Lyapunov reducibility in the case of periodic $A(\cdot)$ and $B(\cdot)$.

  5. Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$ \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t),$ $t\geqslant 0.$ Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad\qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы $(2)$ означает существование такой матричной функции $U(t),$ $t\geqslant 0,$ которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N,$ $\det H_k>0.$ Представленная задача решается в предположении равномерной полной управляемости системы $(1),$ соответствующей замкнутой системе $(2),$ т.е. при условии существования таких $\sigma>0$ и $\gamma>0,$ что при любых начальном моменте времени $t_0\geqslant 0$ и начальном состоянии $x(t_0)=x_0\in \mathbb{R}^n$ системы (1) на отрезке $[t_0,t_0+\sigma]$ найдется измеримое и ограниченное векторное управление $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ переводящее вектор начального состояния этой системы в ноль на данном отрезке. Доказано, что в двумерном случае, т.е. при $n=2,$ свойство равномерной полной управляемости системы $(1)$ является достаточным условием равномерной глобальной достижимости соответствующей системы $(2).$

    We consider a linear time-varying control system with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1) $$ We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t),$ $t\geqslant 0.$ For the closed-loop system $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad \qquad (2)$$ we study a question about the conditions for its uniform global attainability. The last property of the system $(2)$ means existence of a matrix $U(t),$ $t\geqslant 0,$ that ensure equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system $(2)$ with fixed $T>0$ and arbitrary $k\in\mathbb N,$ $\det H_k>0.$ The problem is solved under the assumption of uniform complete controllability of the system $(1),$ corresponding to the closed-loop system $(2),$ i.e. assuming the existence of such $\sigma>0$ and $\gamma>0,$ that for any initial time $t_0\geqslant 0$ and initial condition $x(t_0)=x_0\in \mathbb{R}^n$ of the system $(1)$ on the segment $[t_0,t_0+\sigma]$ there exists a measurable and bounded vector control $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ that transforms a vector of the initial state of the system into zero on that segment. It is proved that in two-dimensional case, i.e. when $n=2,$ the property of uniform complete controllability of the system $(1)$ is a sufficient condition of uniform global attainability of the corresponding system $(2).$

  6. Установлен критерий равномерной полной и дифференциальной управляемости линейной системы с локально интегрируемыми по Лебегу и интегрально ограниченными коэффициентами, в случае когда критерий Калмана неприменим. Получены условия дифференциальной управляемости квазидифференциального уравнения.

    The criterion of uniform complete and differential controllability of linear system with locally integrable and integrally bounded matrix coefficients is established, in a case when Kalman criterion is not applicable. Conditions of differential controllability of a quasidifferential equation are received.

  7. Исследовано свойство равномерной полной управляемости (по Калману) линейной управляемой системы с дискретным временем

    $$x(t+1)=A(t)x(t)+B(t)u(t), \quad t\in\mathbb{N}_0, \quad (x,u)\in\mathbb{R}^n\times\mathbb{R}^m. \qquad(1)$$

    Установлено, что если система $(1)$ равномерно вполне управляема, то матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$ (т.е. $\sup_{t\in\mathbb{N}_0}(|A(t)|+|A^{-1}(t)|)<+\infty$), а матрица $B(\cdot)$ ограничена на $\mathbb{N}_0$. Доказано, что система $(1)$ равномерно вполне управляема тогда и только тогда, когда при некотором $\vartheta\in \mathbb N$ при всех $\tau\in\mathbb N_0$ для матриц

    $$W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(t,s+1)B(s)B^*(s)X^*(t,s+1),\quad$$

      $$W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1)$$

    выполнены неравенства $\alpha_1 I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1 I$, $\alpha_2 I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2 I$ с некоторыми положительными $\alpha_i$ и $\beta_i$. На основании этого утверждения доказан критерий равномерной полной управляемости системы $(1)$, аналогичный критерию Тонкова равномерной полной управляемости систем с непрерывным временем: система $(1)$ $\vartheta$-равномерно вполне управляема тогда и только тогда, когда матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$; матрица $B(\cdot)$ ограничена на $\mathbb N_0$; существует число $\ell=\ell(\vartheta)>0$ такое, что для любого $\tau\in\mathbb{N}_0$ и для любого $x_1\in\mathbb{R}^n$ существует управление $u(t)$, $t\in[\tau,\tau+\vartheta)$, которое переводит решение системы $(1)$ из точки $x(\tau)=0$ в точку $x(\tau+\vartheta)=x_1$ при этом выполнено неравенство $|u(t)|\leqslant \ell |x_1|$, $t\in[\tau,\tau+\vartheta)$.

     

    We study the property of uniform complete controllability (according to Kalman) for a discrete-time linear control system

    $$x(t+1)=A(t)x(t)+B(t)u(t), \quad t\in\mathbb{N}_0, \quad (x,u)\in\mathbb{R}^n\times\mathbb{R}^m. \qquad(1)$$

    We prove that if the system $(1)$ is uniformly completely controllable, then the matrix $A(\cdot)$ is completely bounded on $\mathbb N_0$ (i.e. $\sup_{t\in\mathbb{N}_0}(|A(t)|+|A^{-1}(t)|)<+\infty$) and the matrix $B(\cdot)$ is bounded on $\mathbb N_0$. We prove that the system $(1)$ is uniformly completely controllable if and only if there exists a $\vartheta\in \mathbb N$ such that for all $\tau\in\mathbb N_0$ the inequalities $\alpha_1 I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1 I$, $\alpha_2 I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2 I$ hold for some positive $\alpha_i$ and $\beta_i$, where

    $$W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(t,s+1)B(s)B^*(s)X^*(t,s+1),\quad$$

    $$W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1)$$

    On the basis of this statement, we prove the following criterion for uniform complete controllability of the system $(1)$, which is similar to the Tonkov criterion of uniform complete controllability for continuous-time systems: the system $(1)$ is $\vartheta$-uniformly completely controllable if and only if the matrix $A(\cdot)$ is completely bounded on $\mathbb N_0$; the matrix $B(\cdot)$ is bounded on $\mathbb N_0$; there exists an $\ell=\ell(\vartheta)>0$ such that for every $\tau\in\mathbb{N}_0$ and for any $x_1\in\mathbb{R}^n$ there exists a control function $u(t)$, $t\in[\tau,\tau+\vartheta)$, which transfers the solution of the system $(1)$ from the state $x(\tau)=0$ to the state $x(\tau+\vartheta)=x_1$, and the inequality $|u(t)|\leqslant \ell |x_1|$ holds for all $t\in[\tau,\tau+\vartheta)$.

     

  8. Рассматривается линейная управляемая система $$\dot x=A(t)x+B(t)u,\quad t\in\mathbb R,\quad x\in\mathbb R^{n},\quad u\in\mathbb R^{m}, \qquad \qquad (1)$$ в предположении непрерывности по $t$ и $s$ матрицы Коши $X(t,s)$ свободной системы $\dot x=A(t)x$. На каждом отрезке $[\tau,\tau+\vartheta]$ фиксированной длины $\vartheta$ задается нормированное пространство $Z_{\tau}$ функций, определенных на этом отрезке. Управление $u$ на отрезке $[\tau,\tau+\vartheta]$ называется допустимым, если $u\in Z_{\tau}$ и существует $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s)\,ds$. Векторное подпространство $U_{\tau}$ пространства $Z_{\tau}$, на котором определен оператор $\mathcal Q_{\tau}$, называется пространством допустимых управлений для системы $(1)$ на отрезке $[\tau,\tau+\vartheta]$. Предложено определение равномерной полной управляемости системы $(1)$ для случая произвольной зависимости пространства допустимых управлений от момента начала процесса управления. Получены прямые и двойственные необходимые и достаточные условия равномерной полной управляемости линейной системы в этой ситуации. Показано, что при должном выборе пространства допустимых управлений полученные условия эквивалентны классическим определениям равномерной полной управляемости.

    Makarov E.K., Popova S.N.
    On the definition of uniform complete controllability, pp. 326-343

    We consider a linear control system $$\dot x = A(t)x + B(t)u,\quad t\in\mathbb{R},\quad x\in\mathbb{R}^{n},\quad u\in\mathbb{R}^{m}, \qquad \qquad(1)$$ under the assumption that the transition matrix $X(t,s)$ of the free system $\dot x = A(t)x$ is continuous with respect to $t$ and $s$ separately. We also suppose that on each interval $[\tau, \tau + \vartheta]$ of fixed length $\vartheta$ the normed space $Z_{\tau} $ of functions defined on this interval is given. A control $u$ on the interval $[\tau, \tau+\vartheta]$ is called admissible if $u\in Z_{\tau}$ and there exists the integral $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s)\,ds$. The vector subspace $U_{\tau}$ of the space $Z_{\tau}$ where the operator $\mathcal Q_{\tau}$ is defined is called the space of admissible controls for the system $(1)$ on the interval $[\tau,\tau +\vartheta]$. We propose a definition of uniform complete controllability of the system $(1)$ for the case of an arbitrary dependence of the space of admissible controls on the moment of the beginning of the control process. In this situation direct and dual necessary and sufficient conditions for uniform complete controllability of a linear system are obtained. It is shown that with proper choice of the space of admissible controls, the resulting conditions are equivalent to the classical definitions of uniform complete controllability.

  9. Рассматривается линейная нестационарная управляемая система $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ с кусочно-непрерывными и ограниченными $\omega$-периодическими матрицами коэффициентов $A(\cdot)$ и $B(\cdot)$. Управление в системе (1) строится по принципу линейной обратной связи $u=U(t)x$ с кусочно-непрерывной и ограниченной матричной функцией $U(t)$, $t\in \mathbb{R}$. Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы (2) означает существование такой матричной функции $U(t)$, $t\in \mathbb{R}$, которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb{Z}$, $\det H_k>0$. Представленная задача решается в предположении равномерной полной управляемости (в смысле Калмана) системы (1), соответствующей замкнутой системе (2), т.е. при условии существования для системы (1) таких чисел $\sigma>0$ и $\alpha_i>0$, $i=\overline{1,4}$, что при всяких числе $t_0\in\mathbb{R}$ и векторе $\xi\in \mathbb{R}^n$ справедливы неравенства $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ в которых $X(t,s)$ - матрица Коши линейной системы (1) при $u(t)\equiv0.$ Доказано, что свойство равномерной полной управляемости (в смысле Калмана) периодической системы (1) является необходимым и достаточным условием равномерной глобальной достижимости соответствующей системы (2).

    We consider a linear time-varying control system $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ with piecewise continuous and bounded $\omega$-periodic coefficient matrices $A(\cdot)$ and $B(\cdot).$ We construct control of the system (1) as a linear feedback $u=U(t)x$ with piecewise continuous and bounded matrix function $U(t)$, $t\in \mathbb{R}$. For the closed-loop system $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ the conditions of its uniform global attainability are studied. The latest property of the system (2) means existence of matrix $U(t)$, $t\in \mathbb{R}$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb{Z}$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability (by Kalman) of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such numbers $\sigma>0$ and $\alpha_i>0$, $i=\overline{1,4}$, that for any number $t_0\in\mathbb{R}$ and vector $\xi\in \mathbb{R}^n$ the following inequalities hold: $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ where $X(t,s)$ is the state-transition matrix of linear system (1) with $u(t)\equiv0.$ It is proved that the property of uniform complete controllability (by Kalman) of the periodic system (1) is a necessary and sufficient condition of uniform global attainability of the corresponding system (2).

  10. Для линейной равномерно вполне управляемой системы с почти периодическими коэффициентами установлена глобальная управляемость полной совокупности ляпуновских инвариантов.

    The global controllability over total collection of Lyapunov invariants has been proved for the linear uniformly completely controllable system with almost periodic coefficients.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref