Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе описывается классификация локально конформного почти косимплектического многообразия ($\mathcal{LCAC_{S}}$-многообразия) в соответствии с тензором конгармонической кривизны. В частности, были получены необходимые условия $\Phi$ инвариантности тензора конгармонической кривизны на $\mathcal{LCAC_{S}}$-многообразии классов $CT_{i}$, $i = 1,2,3$. Кроме того, доказано, что любое $\mathcal{LCAC_{S}}$-многообразие класса $CT_{1}$ оказывается конгармоничным и $\Phi$-параконтактным.
локально конформное почти косимплектическое многообразие, тензор конгармонической кривизны, $\Phi$-квазиинвариант, конгармонический $\Phi$-параконтакт
Quaisi invariant conharmonic tensor of special classes of locally conformal almost cosymplectic manifold, pp. 147-157The authors classified a locally conformal almost cosympleсtic manifold ($\mathcal{LCAC_{S}}$-manifold) according to the conharmonic curvature tensor. In particular, they have determined the necessary conditions for a conharmonic curvature tensor on the $\mathcal{LCAC_{S}}$-manifold of classes $CT_{i}, i=1,2,3$ to be $\Phi$-quaisi invariant. Moreover, it has been proved that any $\mathcal{LCAC_{S}}$-manifold of the class $CT_{1}$ is conharmoniclly $\Phi$-paracontact.
-
Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.
многообразие конформной связности, матрица связности, матрица кривизны связности, калибровочные преобразования, перенормируемый скаляр, конформная связность со скалярной кривизной, разбиение единицы, калибровочно-инвариантная метрика
Conformal connection with scalar curvature, pp. 22-35A conformal connection with scalar curvature is defined as a generalization of a pseudo-Riemannian space of constant curvature. The curvature matrix of such connection is computed. It is proved that on a conformally connected manifold with scalar curvature there is a conformal connection with zero curvature matrix. We give a definition of a rescalable scalar and prove the existence of rescalable scalars on any manifold with conformal connection where a partition of unity exists. It is proved: 1) on any manifold with conformal connection and zero curvature matrix there exists a conformal connection with positive, negative and alternating scalar curvature; 2) on any conformally connected manifold there exists a global gauge-invariant metric; 3) on a hypersurface of a conformal space the induced conformal connection can not be of nonzero scalar curvature.
-
В работе рассматриваются два конциркулярных инварианта приближенно келерова многообразия. Доказано, что приближенно келерово многообразие конциркулярно-плоско тогда и только тогда, когда первый конциркулярный инвариант равен нулю. Получена формула для вычисления второго конциркулярного инварианта и выделен подкласс приближенно келеровых многообразий, названный классом конциркулярно-паракелеровых многообразий. Конциркулярно-паракелерово многообразие нулевой скалярной кривизны изометрично комплексному евклидову пространству $\mathbb {C}^n$, снабженному стандартной эрмитовой метрикой. Класс конциркулярно-паракелеровых многообразий ненулевого постоянного типа совпадает с классом шестимерных собственных приближенно келеровых многообразий. Доказано, что конциркулярно-паракелерово приближенно келерово многообразие является римановым многообразием постоянной неотрицательной скалярной кривизны. При этом его скалярная кривизна равна нулю тогда и только тогда, когда оно является келеровым многообразием. Получена полная локальная характеризация конциркулярно-паракелеровых приближенно келеровых многообразий и конциркулярно-рекуррентных приближенно келеровых многообразий.
приближенно келерово многообразие, конциркулярно-рекуррентное многообразие, келерово многообразие, конциркулярно-симметричное многообразие
Concircularly recurrent nearly Kähler manifolds, pp. 408-419In this paper, two concircular invariants of a nearly Kähler manifold are considered. It is proved that a nearly Kähler manifold is concircularly flat if and only if the first concircular invariant is zero. A formula for calculating the second concircular invariant is obtained, and a subclass of nearly Kähler manifolds is distinguished, called the class of concircular-paraKähler manifolds. A concircular-paraKähler manifold of zero scalar curvature is isometric to the complex Euclidean space $\mathbb{C}^n$ equipped with the standard Hermitian metric. The class of concircular-paraKähler manifolds of nonzero constant type coincides with the class of six-dimensional proper nearly Kähler manifolds. It is proved that a concircular-paraKähler nearly Kähler manifold is a Riemannian manifold of constant nonnegative scalar curvature. In this case, its scalar curvature is zero if and only if it is a Kähler manifold. A complete local characterization of concircular-paraKähler nearly Kähler manifolds and concircular-recurrent nearly Kähler manifolds is obtained.
-
Анализ собственных колебаний усеченных конических оболочек переменной толщины, заполненных жидкостью, с. 452-468Представлены результаты численных исследований собственных колебаний усеченных прямых конических оболочек вращения, полностью заполненных идеальной сжимаемой жидкостью. Толщина оболочек непостоянна вдоль образующей и изменяется по различным законам. Поведение упругой конструкции и жидкой среды описывается в рамках классической теории оболочек, основанной на гипотезах Кирхгофа–Лява, и уравнений Эйлера. Уравнения движения оболочки совместно с соответствующими геометрическими и физическими соотношениями сводятся к системе обыкновенных дифференциальных уравнений относительно новых неизвестных. Акустическое волновое уравнение, записанное относительно гидродинамического давления, преобразуется к системе дифференциальных уравнений с помощью метода обобщенных дифференциальных квадратур. Решение сформулированной краевой задачи осуществляется методом ортогональной прогонки Годунова и сводится к вычислению собственных частот колебаний. Для этой цели используется сочетание пошаговой процедуры с последующим уточнением найденных значений в полученном диапазоне методом Мюллера. Достоверность получаемых результатов подтверждена сравнением с известными численными решениями. Для оболочек с различными углами конусности и комбинациями граничных условий (свободное опирание, жесткое и консольное закрепления) исследованы зависимости низших частот колебаний, полученных при степенном (линейном и квадратичном, имеющих симметричную и несимметричную формы) и гармоническом (с положительной и отрицательной кривизной) изменении толщины. Оценено влияние граничных условий на возможность существования конфигураций (угол конусности, закон изменения толщины, отношение максимальной и минимальной толщины профиля), обеспечивавших повышение фундаментальной частоты по сравнению с оболочками постоянной толщины при ограничениях на вес конструкции.
классическая теория оболочек, прямая коническая оболочка, метод ортогональной прогонки Годунова, идеальная сжимаемая жидкость, метод обобщенных дифференциальных квадратур, собственные колебания, переменная толщина
Analysis of natural vibrations of truncated conical shells of variable thickness filled with fluid, pp. 452-468The article presents the results of numerical studies of natural vibrations of truncated straight conical shells of revolution completely filled with an ideal compressible fluid. The shell thickness is not constant along the generatrix and changes according to various laws. The behavior of the elastic structure and liquid medium is described in the framework of the classical shell theory, which is based on the Kirchhoff–Love hypotheses and the Euler equations. The equations of shell motion together with the corresponding geometric and physical relations are reduced to a system of ordinary differential equations with respect to new unknowns. The acoustic wave equation written with respect to the hydrodynamic pressure is transformed to a system of differential equations using the method of generalized differential quadrature. The solution of the formulated boundary value problem is developed by the Godunov orthogonal sweep method and is reduced to the calculation of natural vibrational frequencies. To this end, a step-by step computational procedure is applied in combination with the subsequent refinement of the found values in the obtained range by the Muller method. The validity of the results obtained is verified by comparison with the known numerical solutions. For shells with different cone angles and combinations of boundary conditions (free support, rigid clamping and cantilevered support), the dependence of the lowest vibration frequencies obtained with a power (linear and quadratic, having symmetric and asymmetric forms) and harmonic (with positive and negative curvature) thickness change were investigated. The influence of boundary conditions on the possibility of the existence of configurations (cone angle, law of thickness variation, ratio of maximum or minimum cross-section thickness) that ensured an increase in the fundamental frequency compared to shells of constant thickness with restrictions on the weight of the structure was estimated.
-
Исследуется система $N$ ротаторов с наложенной связью, заданной условием обращения в ноль суммы косинусов углов поворота. Сформулированы уравнения динамики и приведены результаты численного моделирования для случаев $N=3$, $4$ и $5$, которые отвечают геодезическим потокам на двумерном, трехмерном и четырехмерном многообразии в компактной области (в силу периодичности конфигурационного пространства по угловым переменным). Система из трех ротаторов демонстрирует хаос, характеризуемый наличием одного положительного показателя Ляпунова, а для систем из четырех и пяти элементов имеется, соответственно, два и три положительных показателя (гиперхаос). Реализован алгоритм, позволяющий вычислять секционную кривизну многообразия в ходе численного моделирования динамики в точках траектории. В случае $N=3$ кривизна двумерного многообразия отрицательна (за исключением конечного числа точек, где она нулевая), и реализуется геодезический поток Аносова. Для $N=4$ и $5$ расчеты показывают, что условие отрицательной секционной кривизны не выполнено. Также изложена методика и представлены результаты проверки гиперболичности на основе численного анализа углов между подпространствами векторов малых возмущений, причем в случае $N=3$ гиперболичность подтверждается, а для $N=4$ и $5$ нет.
A system of $N$ rotators is investigated with a constraint given by the condition of vanishing sum of the cosines of the rotation angles. Equations of the dynamics are formulated and results of numerical simulation for the cases $N=3$, $4$, and $5$ are presented relating to the geodesic flows on a two-dimensional, three-dimensional, and four-dimensional manifold, respectively, in a compact region (due to the periodicity of the configuration space in angular variables). It is shown that a system of three rotators demonstrates chaos, characterized by one positive Lyapunov exponent, and for systems of four and five elements there are, respectively, two and three positive exponents (“hyperchaos”). An algorithm has been implemented that allows calculating the sectional curvature of a manifold in the course of numerical simulation of the dynamics at points of a trajectory. In the case of $N=3$, curvature of the two-dimensional manifold is negative (except for a finite number of points where it is zero), and Anosov's geodesic flow is realized. For $N=4$ and $5$, the computations show that the condition of negative sectional curvature is not fulfilled. Also the methodology is explained and applied for testing hyperbolicity based on numerical analysis of the angles between the subspaces of small perturbation vectors; in the case of $N=3$, the hyperbolicity is confirmed, and for $N=4$ and $5$ the hyperbolicity does not take place.
-
Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma.$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.
задача быстродействия, рассеивающая поверхность, биссектриса, псевдовершина, крайняя точка, кривизна, сингулярное множество, репер Френе
On the structure of the singular set of solutions in one class of 3D time-optimal control problems, pp. 471-486A class of time-optimal control problems in terms of speed in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve $\Gamma$ was chosen as the target set. Pseudo-vertices — characteristic points on $\Gamma,$ responsible for the appearance of a singularity in the optimal result function, are selected. The characteristic features of the structure of a singular set belonging to the family of bisectors are revealed. An analytical representation is found for the extreme points of the bisector corresponding to a fixed pseudo-vertex. As an illustration of the effectiveness of the developed methods for solving nonsmooth dynamic problems, an example of the numerical-analytical construction of resolving structures of a control problem in terms of speed is given.
-
В работе рассматривается вывод законов кинематического управления движением трехколесного и четырехколесного экипажей с жесткими колесами вдоль произвольной гладкой траектории. Параметрами управления для трехколесного экипажа выбраны независимые углы вращения ведущих колес. Параметром управления четырехколесного экипажа выбран угол поворота переднего колеса в двухколесной модели автомобиля, определяемый углами поворота передних колес по принципу рулевого управления Аккермана. Установлено, что произведение скорости любой точки корпуса автомобиля на ориентированную кривизну ее траектории является кинематическим инвариантом, определяющим угловую скорость автомобиля. Приведены результаты численного моделирования и анимации движения трехколесного и четырехколесного экипажей, демонстрирующие адекватность предлагаемой модели кинематического управления. Обсуждаются возможности применения установленных законов кинематического управления движением при уточнении алгоритмов параллельной парковки, при решении навигационных задач управления механическими транспортными средствами при помощи навигационных систем ГЛОНАСС и GPS, при решении задач управления мобильными роботами с помощью датчиков слежения, а также при проектировании автодорог, транспортных развязок, паркингов, автозаправок, дорожных пунктов питания и при создании тренажеров.
кинематическое управление, трехколесный экипаж, мобильный робот, траектория движения транспортного средства, углы поворота управляемых колес, принцип рулевого управления Аккермана, навигация, маневрирование
Kinematic control of vehicle motion, pp. 254-266The derivation of laws of kinematic control of motion of three-wheeled and four-wheeled carriages with hard wheels along an arbitrary smooth trajectory is considered in this paper. The independent angles of rotation of driving wheels are chosen as parameters of control for a three-wheeled carriage. The angle of rotation of a front wheel in the two-wheeled car models defined by the angles of rotation of front wheels on the basis of Ackermann steering is chosen as a control parameter for a four-wheeled carriage. It is established that the product of the velocity of any point of the vehicle body and the oriented curvature of its trajectory is a kinematic invariant determining the angular velocity of a vehicle. The paper presents the results of numerical modeling and animation of three-wheeled and four-wheeled carriages motion demonstrating the adequacy of the proposed model of kinematic control. The use of the proposed model can be a significant refinement of algorithms of parallel parking as well as the solution of navigation problems of management of motor vehicles using GPS and GLONASS navigation systems and problems of control of mobile robots with the help of tracking sensors. Also the proposed model can be useful for designing the motor roads, road interchanges, single-level and multilevel Parking lots, gasoline stations, on-the-go fast food stations and for the creation of car-simulators.
-
Проективно-двойственные переменные использованы для описания геометрии движения точечной массы в движущейся системе наблюдения, связанной с воздушной средой, характеризующейся квадратичным по скорости законом для лобового сопротивления. Через обратный переход к неподвижной системе и обратное преобразование Лагранжа выведены степенные формулы для абсолютных координат и времени: $x(b)$, $y(b)$, $z(b)$ и $t(b)$, $b = \rm{tg}\, \Theta$ — наклон относительной траектории, в области малых углов вылета $\Theta_0 < 15^{\circ}$. Выражения используют ключевые параметры движения: $b_0 = \rm{tg}\, \Theta_0$, $\Theta_0$ — угол вылета, $R_a$ — вершинный радиус кривизны траектории и $\beta_0$ — отношение квадрата разворотной скорости к квадрату предельной скорости. Малое отклонение полученных аппроксимаций от классических интегральных выражений обусловлено эффектом автоподстройки, заключающемся в уменьшении параметра $\beta_0$ с ростом начального наклона траектории $b_0$. Для стартовых сил сопротивления, не превышавших $1.15$ $\rm{m\,g}$, и скоростей ветра, меньших 40 м/с, и в вышеуказанном интервале углов вылета абсолютные погрешности составляли величины порядка дециметров, а относительные не превышали десятых долей процента. Ввиду того, что численная реализация формул «почти» алгебраическая, они могут быть внедрены в простейшие баллистические калькуляторы как используемые для стрельбы в условиях ветра, так и с движущегося орудия/по движущейся мишени.
квадратичный закон сопротивления, скорость ветра, снаряд, проективно-двойственные координаты, баллистический, малоугловая область, движущееся орудие, траектория, параметрическое уравнениеPrecise trajectory equation is deduced by using dual-projective variables for a heavy projectile motion in medium with quadratic in speed longitudinal wind. By integration by parts there were received the power type formulas for low angle trajectories with initial slopes $\Theta_0 < 15^{\circ}$. They use the following key parameters of motion, namely $b_0 = \rm{tg}\,\Theta_0$, with $\Theta_0$ as an angle of throwing, $R_a$ as the top curvature radius and $\beta_0$ as dimensionless speed square in the highest point of the trajectory. These formulas for the coordinates and time $x(b)$, $y(b)$, $z(b)$ and $t(b)$ with $b = \rm{tg}\, \Theta$ being the current slope of the trajectory display strongly the effect of self-improving of accuracy due to diminishing of $\beta_0$ with the $b_0$ growing. Their precision when compared to exact integral formulas occurs to consist of 0.1-0.3 %% and this takes place in wide range of wind speeds up to $40\,mps$ and with starting drag forces of $1.15$ $\rm{m\,g}$ value. Due to their simplicity and quasi-algebraic type the formulas may be easily implemented in ballistic calculator, especially for the guns shooting as they moving at high speeds and in moving targets.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.



