Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Характеристики множества достижимости, связанные с инвариантностью управляемой системы на конечном промежутке времени
Изучаются статистические характеристики множества достижимости управляемой системы, которая параметризована с помощью топологической динамической системы. Получены оценки снизу характеристик, связанных с инвариантностью заданного множества на конечном промежутке времени. Рассматривается также следующая задача, возникающая во многих приложениях. Пусть заданы числа λ0 ∈ (0, 1] и θ > 0. Необходимо найти условия, которым должны удовлетворять управляемая система и множество X, чтобы для заданного σ ∈ Σ относительная частота поглощения множества достижимости A(t,σ,X) системы заданным множеством M на любом отрезке времени длины θ была бы не менее λ0. Отметим, что характеристика θ предполагается заданной в зависимости от прикладной задачи. В частности, если управляемый процесс имеет периодический характер, то θ является периодом данного процесса. Результаты работы иллюстрируются на примерах управляемых систем, которые описывают различные модели роста популяции.
The characteristics of attainability set connected with invariancy of control systems on the finite time interval
We study the statistical characteristics of the attainability set A(t,σ,X) of the control system which is parametrized by means of a topological dynamical system (Σ,ht). We obtain the lower estimates for characteristics connected with invariance of given set on a finite time interval. We also consider the following problem arising in many applications. Let numbers λ0 ∈ (0, 1] and θ > 0 are given. It is necessary to find the conditions which the control system and set X should satisfy providing that for given σ ∈ Σ relative frequency of containing of the attainability set A(t,σ,X) in the given set M on any interval of time length θ would be not less then λ0. Let’s notice, that the characteristic θ is assumed given depending on an applying problems. In particular, if control process is periodic, then θ is the period of the process. Results are illustrated by examples of the control systems which describe different models of population growth.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.