Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Теснота и псевдохарактер компактных $T_1$-пространств
Рассматриваются кардинально-значные характеристики $T_1$-пространств и их взаимосвязи. Доказано, что для самосопряженных $T_1$-пространств, то есть пространств, в которых множество замкнуто тогда и только тогда, когда оно компактно, выполняется неравенство $t(X)\leqslant\psi(X)$, где $t(X)$ - теснота, $\psi(X)$ - псевдохарактер пространства $X$. Показано, что в общем случае в компактных $T_1$-пространствах связь между теснотой и псевдохарактером не существует. Приведен пример компактного $T_1$-пространства $X$ такого, что $t(X)>\omega$ и $\psi(X) =\omega$, и приведен пример $T_1$-пространства $X$ такого, что $t(X)=\omega$ и $\psi(X) >\omega$.
On tightness and pseudocharacter of compact $T_1$-spaces
We consider the relationship between the pseudocharacter $\psi(X)$ and the tightness $t(X)$ of compact $T_1$-spaces $X$. We prove that $t(X)\leqslant\psi(X)$ for self-adjoined $T_1$-spaces, i.e., the spaces where a subset is closed if and only if it is compact. We also show that in general for compact $T_1$-spaces there is no relationship between these cardinal invariants. We give an example of a compact $T_1$-space such that the tightness of this space is uncountable, but its pseudocharacter is countable. Another example shows the space $X$ whose tightness is countable, but its pseudocharacter is uncountable.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.