Теснота и псевдохарактер компактных $T_1$-пространств

 pdf (137K)

Рассматриваются кардинально-значные характеристики $T_1$-пространств и их взаимосвязи. Доказано, что для самосопряженных $T_1$-пространств, то есть пространств, в которых множество замкнуто тогда и только тогда, когда оно компактно, выполняется неравенство $t(X)\leqslant\psi(X)$, где $t(X)$ - теснота, $\psi(X)$ - псевдохарактер пространства $X$. Показано, что в общем случае в компактных $T_1$-пространствах связь между теснотой и псевдохарактером не существует. Приведен пример компактного $T_1$-пространства $X$ такого, что $t(X)>\omega$ и $\psi(X) =\omega$, и приведен пример $T_1$-пространства $X$ такого, что $t(X)=\omega$ и $\psi(X) >\omega$.

Ключевые слова: $T_1$-пространство, компакт, теснота, псевдохарактер
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2019, т. 29, вып. 3, с. 312-318
DOI: 10.20537/vm190302

On tightness and pseudocharacter of compact $T_1$-spaces

We consider the relationship between the pseudocharacter $\psi(X)$ and the tightness $t(X)$ of compact $T_1$-spaces $X$. We prove that $t(X)\leqslant\psi(X)$ for self-adjoined $T_1$-spaces, i.e., the spaces where a subset is closed if and only if it is compact. We also show that in general for compact $T_1$-spaces there is no relationship between these cardinal invariants. We give an example of a compact $T_1$-space such that the tightness of this space is uncountable, but its pseudocharacter is countable. Another example shows the space $X$ whose tightness is countable, but its pseudocharacter is uncountable.

Keywords: $T_1$-space, compact, tightness, pseudocharacter
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2019, vol. 29, issue 3, pp. 312-318

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref