Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'барицентрические координаты':
Найдено статей: 3
  1. Рассмотрено применение барицентрического метода для численного решения задач Дирихле и Неймана для уравнения Гельмгольца в ограниченной односвязной области $\Omega\subset\mathbb{R}^2$. Основное допущение в решении заключается в задании границы $\Omega$ в кусочно-линейном представлении. Отличительная особенность барицентрического метода состоит в порядке формирования глобальной системы векторных базисных функций для $\Omega$ через барицентрические координаты. Установлены существование и единственность решения задач Дирихле и Неймана для уравнения Гельмгольца барицентрическим методом и определена оценка скорости сходимости. Уточнены особенности алгоритмической реализации метода.

  2. Исследовано однопараметрическое семейство квадратичных интерполяционных многочленов нескольких переменных. В роли параметра выступает точка n-мерного пространства. Исследованы вопросы существования и единственности интерполяционных многочленов. Для многочленов получено явное представление (в барицентрической системе координат). Показано, что лишь для одного-единственного параметра имеет место непрерывная стыковка интерполяционных многочленов, построенных на элементах триангуляции специального вида. Для интерполяционного многочлена, соответствующего данному параметру, получено явное представление в декартовой системе координат. Применение интерполяции с данным параметром позволяет осуществлять квадратичную сплайн-аппроксимацию функций многих переменных (одновременно с аппроксимацией поля градиента этой функции).

  3. Приведены обоснование и процедура построения специальных многомерных сплайнов произвольной степени лагранжевого типа, названных λ-сплайнами. Они строятся из многомерных интерполяционных алгебраических многочленов фиксированной степени, заданных на симплексах специальной триангуляции области определения исходной функции.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref