Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Бифуркационное исследование перехода к хаосу в колебательной системе движения пластинки в жидкости, с. 3-18Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.
-
Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.
-
В статье рассматривается аналогия между двумя плоскими задачами механики сплошных сред: гидродинамическая задача о движении вязкой жидкости, заключенной между двумя вращающимися цилиндрами, и плоская задача теории упругости в напряжениях, создаваемых в трубе постоянным нормальным внешним давлением. В обеих задачах область решения - кольцо; в рамках настоящей работы рассмотрены два случая: концентрическое и эксцентрическое кольцо. В первой части статьи проведено построение аналогии для случая концентрического кольца, показано, что в этом случае решения рассматриваемых задач выражаются функциями одного и того же вида. Во второй части статьи представлена попытка построения прямой аналогии для случая эксцентрического кольца и обозначены возникающие проблемы. Исследование в третьей части статьи направлено на установление напряженного состояния в эксцентрическом кольце, соответствующего бигармонической функции напряжений, построенной по аналогии с изученной гидродинамической задачей с учетом условий однозначности смещений. В результате проведенного исследования можно сделать вывод о том, что аналогия между рассматриваемыми задачами может быть установлена, но только с учетом механических особенностей каждой из них. При этом в случае концентрического кольца наблюдается прямая аналогия.
-
Начально-краевая задача для уравнений динамики вращающейся вязкой стратифицированной жидкости, с. 625-641В работе рассматривается задача о малых движениях вязкой стратифицированной жидкости, частично заполняющей контейнер, который равномерно вращается вокруг оси, сонаправленной с действием силы тяжести. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Исходная начально-краевая задача сводится к задаче Коши для дифференциального уравнения первого порядка в некотором гильбертовом пространстве. После детального изучения свойств операторных коэффициентов доказана теорема о разрешимости полученной задачи Коши. На этой основе найдены достаточные условия существования решения начально-краевой задачи, описывающей эволюцию исходной гидросистемы.
-
Разработана осесимметрическая модель на основе упрощенных уравнений вязкой жидкости для исследования двухслойного течения со свободной границей, создаваемого подъемом жесткого блока фундамента. Получено численное решение полной нелинейной системы и выполнен анализ малых возмущений движения границ слоев. Основной результат заключается в том, что кольцевая структура образуется на поверхности жидкости, если плотность нижнего слоя больше, чем у верхнего. Предлагаемая модель может представлять интерес для геофизики при изучении процесса образования крупномасштабных кольцевых структур на поверхности Земли и других планет.
-
Сформулирована математическая модель обтекания дендрита наклонным потоком вязкой жидкости в гидродинамическом приближении Осеена. Построено аналитическое решение задачи об обтекании параболического дендрита наклонным потоком жидкости в двумерном и трехмерном случаях. В лабораторной системе координат определены компоненты скорости жидкости вблизи вершины дендрита в двумерной и трехмерной геометриях течения с использованием криволинейных координат параболического цилиндра и параболоида вращения. Аналитические решения гидродинамических уравнений Осеена переписаны в системе координат растущего с постоянной скоростью дендрита. В предельном случае нулевого угла между направлением скорости жидкости вдали от дендрита и его осью найденное решение переходит в ранее известное. Проиллюстрирована зависимость приведенной компоненты скорости жидкости от параболических координат при различных коэффициентах наклона течения.
-
Нелинейная модель осесимметричного течения двухслойной вязкой жидкости со свободной поверхностью, с. 91-100На основе упрощенных уравнений Навье-Стокса в длинноволновом приближении построена нелинейная модель двухслойного течения вязкой жидкости со свободной границей, создаваемого начальным рельефом границ слоев. Используя метод малого параметра, исследуется эволюция течения на больших временах и определяется зависимость между движением поверхности и границы раздела жидкости. Полученные результаты применяются для расчета профиля границы кора-мантия под крупномасштабной кольцевой структурой на Луне.
-
Приводится постановка нелинейной краевой задачи о распространении волн по свободной поверхности слабовязкой жидкости. Решение задачи находится методом переменной во времени частоты, являющимся обобщением метода Стокса для диссипативных волновых процессов. Найдено асимптотическое решение с точностью третьего приближения по волновому параметру. Показано, что частота и декремент затухания нелинейной волны с течением времени стремятся к значениям, соответствующим линейной задаче. Определены нелинейные траектории жидких частиц, а также выражение переносной скорости Стокса в слабовязкой жидкости.
-
В работе рассматривается безвинтовой робот, перемещающийся по поверхности жидкости за счет вращения внутреннего ротора. Корпус робота в сечении имеет форму симметричного крылового профиля NACA 0040. Записаны уравнения движения в виде классических уравнений Кирхгофа, дополненных слагаемыми, описывающими вязкое сопротивление. На основе анализа полученной модели предложен закон управления. Проведены исследования влияния различных параметров модели на траекторию движения робота.
-
Асимптотическое исследование трехслойного течения вязкой жидкости и некоторые геофизические приложения, с. 107-115Разработана нелинейная модель трехслойного течения со свободной границей на основе упрощенных уравнений вязкой жидкости в длинноволновом приближении. Проведено асимптотическое исследование модели, которое показало существование двух различных режимов эволюции течения на малых и больших временах. Получено уравнение, связывающее смещения границ слоев на больших временах, не зависящее от предыстории течения. Модельные результаты используются для изучения поведения глубинной границы под крупномасштабной кольцевой структурой на Луне в зависимости от изменения геометрических физических параметров модели.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.