Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'динамическая система сдвигов':
Найдено статей: 10
  1. Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.

  2. Для динамической системы, подверженной воздействиям управления и помехи и содержащей последействие в управляющих силах, рассматривается задача об управлении с оптимальным гарантированным результатом для показателя качества, представляющего собой евклидову норму совокупности отклонений движения системы в заданные моменты времени от заданных целей. На основе функциональной трактовки, опирающейся на своеобразный прогноз движений, исходная задача сводится к вспомогательной дифференциальной игре для системы без запаздывания и с терминальной платой. Функция цены этой игры вычисляется на базе конструкции выпуклых сверху оболочек вспомогательных функций из метода стохастического программного синтеза, оптимальные стратегии строятся методом экстремального сдвига на сопутствующие точки. Рассматриваются иллюстрирующие примеры, приводятся результаты численных экспериментов.

  3. Рассматривается динамическая система сдвигов в пространстве ℜ непрерывных функций, принимающих значения в полном метрическом пространстве (clos(Rn), ρcl) непустых замкнутых подмножеств в Rn. Расстояние между функциями в этом пространстве определяется с помощью аналога метрики Бебутова в пространстве вещественных функций, определенных и непрерывных на всей числовой оси. Показано, что для компактности замыкания траектории точки в ℜ достаточно, чтобы исходная функция была ограничена и равномерно непрерывна в метрике ρcl. Как следствие, доказано, что замыкание траектории рекуррентного движения или траектории почти периодического движения в ℜ компактно.

  4. В работе изучена следующая задача: для линейной автономной дифференциально-разностной системы нейтрального типа с запаздыванием в состоянии требуется обеспечить ее полное успокоение с помощью обратной связью. Для решения указанной задачи предложен линейный автономный динамический дифференциально-разностный регулятор типа обратной связи по состоянию, не выводящий замкнутую систему из исходного класса линейных автономных систем нейтрального типа. Достаточное условие существования такого регулятора совпадает с критерием полной управляемости. Кроме того, замкнутая система будет иметь конечный спектр, что существенно упрощает задачу вычисления текущего состояния в ходе технической реализации регулятора. Основная идея исследования заключается в выборе параметров регулятора так, чтобы замкнутая система стала точечно вырожденной в направлениях, отвечающих фазовым компонентам исходной (разомкнутой) системы. Для этого на начальном этапе исходная система обратной связью приводится к системе запаздывающего типа с одним входом. Далее для полученного объекта строится динамический регулятор, обеспечивающий вырождение соответствующих фазовых компонент.

    Предложенная процедура построения управляющего воздействия базируется на алгебраических свойствах оператора сдвига и не предполагает вычисления корней характеристического квазиполинома исходной системы. Возможно ее использование для обеспечения замкнутой системе не только полного успокоения, но и экспоненциальной устойчивости. Однако в последнем случае возникает необходимость использовать динамические регуляторы с обратной связью по состоянию интегрального типа.

  5. Для управляемых систем со случайными параметрами исследуются свойства статистической инвариантности и статистически слабой инвариантности, выполненные с вероятностью единица. Получены достаточные условия инвариантности заданного множества относительно управляемой системы, выраженные в терминах функций Ляпунова и динамической системы сдвигов. Доказано обобщение теоремы С.А. Чаплыгина о дифференциальных неравенствах и получены условия существования верхнего решения для задачи Коши с кусочно непрерывной по t правой частью без предположения единственности решения.

  6. Данная статья является продолжением работ Л.И. Родиной и Е.Л. Тонкова, в которых введено расширение понятия инвариантности множеств относительно управляемых систем и дифференциальных включений. Это расширение состоит в исследовании множеств, которые не являются инвариантными в «классическом» смысле, но обладают свойством статистической инвариантности, а также в изучении статистических характеристик множества достижимости управляемой системы.

    В данной работе рассматриваются характеристики, связанные с инвариантностью заданного множества M(σ) относительно управляемой системы, которые отражают свойство равномерности пребывания множества достижимости системы в множестве M(σ) на конечном промежутке времени. Для управляемой системы со случайными коэффициентами получены оценки этих характеристик, выраженные в терминах функций Ляпунова, производной в силу дифференциального включения и динамической системы сдвигов. В частности, получены оценки, выполненные с вероятностью единица, для характеристик управляемой системы, которую будем называть системой с переключениями. Данную систему можно отождествить со стационарным случайным процессом, множество состояний которого конечно; для него заданы начальное вероятностное распределение и вероятности нахождения в каждом состоянии; длины промежутков между моментами переключения системы с одного состояния на другое являются случайными величинами с заданной функцией распределения. Рассматривается пример оценки исследуемых характеристик для линейной управляемой системы с переключениями.

  7. Получены условия, позволяющие оценивать относительную частоту пребывания множества достижимости управляемой системы в некотором заранее заданном множестве. Если относительная частота пребывания в этом множестве равна единице, то данное множество называется статистически инвариантным. Получены также условия, при которых заданное множество статистически слабо инвариантно относительно управляемой системы, то есть для каждой начальной точки из этого множества по крайней мере одно решение управляемой системы, статистически инвариантно. Предполагается, что образы правой части дифференциального включения, отвечающего данной управляемой системе, замкнуты, но не обязательно компактны. Основные утверждения формулируются в терминах функций Ляпунова, метрики Хаусдорфа–Бебутова и динамической системы сдвигов, сопутствующей правой части дифференциального включения.

  8. Лебедев В.Г., Сысоева А.А., Княжева И.С., Данилов Д.А., Галенко П.К.
    Компьютерное моделирование высокоскоростного затвердевания разбавленного расплава Si-As, с. 123-140

    В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.

    Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.

    Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.

  9. Рассматриваются так называемые стандартные управляемые системы, это системы дифференциальных уравнений, заданных на гладких многообразиях конечной размерности, равномерно непрерывные и ограниченные по времени на числовой прямой и локально липшицевы по фазовым переменным. Кроме того, предполагается, что задано компактное множество, задающее геометрические ограничения на допустимые управления и, кроме того, выполнено условие невырожденности, означающее, что для каждой точки фазового многообразия и всех моментов времени найдется управление, при котором значение векторного поля содержится в евклидовом пространстве, касательном к фазовому многообразию в заданной точке.

    При помощи модифицированного метода функции Ляпунова и построения омега-предельного множества соответствующей динамической системы сдвигов сформулированы утверждения о существовании ограниченных на положительной полуоси допустимых управляемых процессов и утверждение о равномерной локальной управляемости соответствующего магистрального процесса.

  10. Для систем, описываемых уравнениями с запаздыванием, обсуждается применение экстремального сдвига к исследованию некоторых задач динамической идентификации и робастного управления.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref