Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'задачи Коши':
Найдено статей: 32
  1. Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.

  2. Рассматривается задача с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в прямоугольной области. Исследуются вопросы существования и единственности классического решения рассматриваемой задачи, а также непрерывной зависимости решения от исходных данных. Предлагается новый подход к решению задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка на основе введения новых функций. Путем введения новых неизвестных функций задача сводится к эквивалентному семейству задач Коши для нагруженной системы дифференциальных уравнений с параметрами и интегральным соотношениям. Предложен алгоритм нахождения приближенного решения эквивалентной задачи и доказана его сходимость. Установлены условия однозначной разрешимости задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в терминах коэффициентов системы.

  3. В данной работе рассматривается система Каупа–Буссинеска с самосогласованным источником. Показано, что система Каупа–Буссинеска с самосогласованным источником может быть проинтегрирована методом обратной задачи рассеяния. Для решения рассматриваемой задачи используются прямая и обратная задачи рассеяния уравнения Штурма–Лиувилля с потенциалом, зависящим от энергии. Определена временная эволюция данных рассеяния для уравнения Штурма–Лиувилля с энергозависимыми потенциалами, связанными с решением системы Каупа–Буссинеска с самосогласованным источником. Полученные равенства полностью определяют данные рассеяния при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для системы Каупа–Буссинеска с самосогласованным источником.

  4. В статье исследуются прямая и обратная задачи для уравнений субдиффузии с участием дробной производной в смысле Хильфера. В качестве эллиптической части уравнения взят произвольный положительный самосопряженный оператор $A$. В частности, в качестве оператора $A$ можно взять оператор Лапласа с условием Дирихле. Сначала доказано существование и единственность решения прямой задачи. Затем с помощью представления решения прямой задачи доказывается существование и единственность обратной задачи нахождения правой части уравнения, зависящей только от пространственной переменной.

  5. Утверждается, что если в дополнение к условиям существования и единственности решения x(t, t0, μ) n-векторной задачи Коши dx/dt = f(t, x, μ) (tI, μM), x(t0) = x0 и непрерывной зависимости его от параметра μM потребовать равностепенную непрерывность семейства {f(t, x, ·)}(t,x), то x(t, t0, μ) равномерно непрерывно зависит от параметра μ на открытом множестве M. Для линейной n×n-матричной задачи Коши dX/dt = A(t, μ)X + (t, μ) (tI, μM), X(t0, μ) = X0(μ) аналогичное утверждение доказывается в предположении равномерной произвольной малости интегралов ∫I||A(t, μ1) − A(t, μ2)|| dt и ∫I||(t, μ1) − (t, μ2)|| dt при достаточной малости ||μ1μ2|| (μ1, μ2M).

  6. В работе предложено обобщение теоремы Надлера о неподвижных точках для многозначных отображений действующих в метрических пространствах. Полученный результат позволяет изучать существование неподвижных точек у многозначных отображений, которые не обязательно являются сжимающими, и даже непрерывными, относительно метрики Хаусдорфа, и образами которых могут быть произвольные множества соответствующего метрического пространства. Упомянутый результат можно использовать для исследования дифференциальных и функционально-дифференциальных уравнений с разрывами, а также включений, правые части которых порождены многозначными отображениями с произвольными образами. Во второй части работы, в качестве приложения, получены условия существования и продолжаемости решений задачи Коши для дифференциального включения с некомпактной правой частью в пространстве Rn.

  7. В работе рассматривается следующая краевая задача для обобщенного уравнения Коши-Римана в единичном круге G={zC: |z|<1}: ¯zw+b(zw=0, ℜw=g на ∂G, ℑw=h в точке z0=1. Коэффициент b(z) выбирается из некоторого множества SP, построенного с помощью весов, причем SPL2, SPLq, q>2. В свою очередь, краевое условие g выбирается из пространства, порожденного модулем непрерывности μ, обладающим некоторыми специальными свойствами. Показывается, что задача имеет единственное решение w=w(z) в круге G, причем wCG). Кроме того, вне точки z=0 поведение решения задачи определяется тем же самым модулем непрерывности μ, что означает, что для решения задачи отсутствует «логарифмический эффект».

  8. В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.

    В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.

    С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.

    Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.

  9. Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$ \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t),$ $t\geqslant 0.$ Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad\qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы $(2)$ означает существование такой матричной функции $U(t),$ $t\geqslant 0,$ которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N,$ $\det H_k>0.$ Представленная задача решается в предположении равномерной полной управляемости системы $(1),$ соответствующей замкнутой системе $(2),$ т.е. при условии существования таких $\sigma>0$ и $\gamma>0,$ что при любых начальном моменте времени $t_0\geqslant 0$ и начальном состоянии $x(t_0)=x_0\in \mathbb{R}^n$ системы (1) на отрезке $[t_0,t_0+\sigma]$ найдется измеримое и ограниченное векторное управление $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ переводящее вектор начального состояния этой системы в ноль на данном отрезке. Доказано, что в двумерном случае, т.е. при $n=2,$ свойство равномерной полной управляемости системы $(1)$ является достаточным условием равномерной глобальной достижимости соответствующей системы $(2).$

  10. В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с непрерывным и дискретным временем и дискретной памятью. В рамках этого класса предлагается явное представление для основных составляющих представления общего решения — фундаментальной матрицы и оператора Коши. Полученные представления даются в терминах параметров рассматриваемой системы и открывают возможность эффективного исследования общих краевых задач и задач управления относительно заданной конечной системы линейных целевых функционалов. При исследовании упомянутых задач для систем за пределами изучаемого класса рассматриваемые в работе системы с дискретной памятью могут играть роль модельных или аппроксимирующих систем и оказаться полезными при изучении грубых свойств систем с последействием, сохраняющихся при малых возмущениях параметров.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref