Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассматривается задача оптимального управления одномерным процессом, заданным стохастическим дифференциальным уравнением, в котором управление воздействует как на коэффициент сноса, так и на коэффициент диффузии, при этом диффузионная составляющая линейна по управлению $$dx(t) = b(t,x(t),u(t))dt +\sigma(t,x(t))u(t)dW(t),\qquad x(0) = x_0.$$ Здесь $x(t)$ - фазовая координата, $u(t)$ - управляющая функция, $W(t)$ - винеровский процесс. Доказана теорема, которая предоставляет структуру решения рассматриваемого уравнения в виде суперпозиции функций $x(t)=Φ(t,u(t)W(t)+y(t))$, в котором $Φ(t,v)$ - известная функция, полностью определяющаяся коэффициентом $σ(t,x)$, и не зависит от управления, а $y(t)$ - решение потраекторно-детерминированного дифференциального уравнения с мерой вида
$$dy(t) = B(t,y(t),u(t))dt - W(t)du(t).$$
Выявленная структура решения позволяет вместо исходной стохастической задачи оптимального управления исследовать новую эквивалентную задачу с фазовой переменной $y(t)$, которая является потраекторно-детерминированной задачей оптимального импульсного управления. При детерминированном рассмотрении новой задачи решения последней могут оказаться упреждающими функциями, поэтому в работе предлагается метод, который позволяет добиться неупреждаемости оптимальных решений. Суть метода заключается в модификации функционала потерь в новой потраекторно-детерминированной задаче специальным образом подобранным интегральным слагаемым, которое позволяет гарантировать неупреждаемость решений.
-
В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с последействием, непрерывным и дискретным временем и импульсными воздействиями (импульсные гибридные ФДУ). В центре внимания находятся конструкции операторов, позволяющих дать полное описание всех траекторий гибридной системы, и в терминах этих операторов формулировать условия разрешимости задач управления с выбором управлений из различных классов, давать описание (оценки) множеств достижимости при наличии ограничений на управление, а также получать условия разрешимости общих линейных краевых задач. Дается детальное описание всех компонент оператора Коши, изучаются их свойства. Для компонент с непрерывным временем получены условия их непрерывности по второму аргументу, влияющие на возможность выбора класса управляющих воздействий. Упомянутые конструкции систематически используют результаты о матрицах Коши систем ФДУ с непрерывным временем и систем разностных уравнений с дискретным временем.
-
Об устойчивости линейных систем с импульсным воздействием в матрице системы и запаздыванием, с. 40-46Работа посвящена исследованию свойств асимптотической устойчивости решений линейной системы дифференциальных уравнений с обобщенным воздействием в матрице системы и запаздыванием в фазовых координатах.
-
Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:
A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, t∈I=[t0,t0+T]. (1)
Целью управления является движение системы по множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.
Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения
A(t,x)ẋ∈F(t,x)+u,
где u - позиционное импульсное управление, и скользящими режимами системы
A(t,x)ẋ∈F(t,x)+B(t,x)ũ(t,x)
с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.
-
Результаты исследований Е.Л. Тонкова и Е.А. Панасенко распространяются на дифференциальные уравнения и управляемые системы с импульсным воздействием. В терминах функций Ляпунова и производной Кларка получены теоремы сравнения для систем с импульсным воздействием. Рассматривается множество $\mathfrak M\doteq\bigl\{(t,x)\in[t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\},$ заданное непрерывной функцией $t\rightarrow M(t)$, где для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. Получены условия положительной инвариантности данного множества, равномерной устойчивости по Ляпунову и равномерной асимптотической устойчивости. Проведено сравнение с исследованиями других авторов, которые рассматривали вопросы устойчивости нулевого решения для аналогичных систем.
-
Свойства средней временной выгоды в стохастических моделях сбора возобновляемого ресурса, с. 213-221Рассматриваются модели сбора возобновляемого ресурса, заданные дифференциальными уравнениями с импульсными воздействиями, зависящими от случайных параметров. При отсутствии эксплуатации развитие популяции описывается дифференциальным уравнением $\dot x =g(x),$ которое имеет асимптотически устойчивое решение $\varphi(t)\equiv K,$ $K>0.$ Предполагаем, что длины интервалов $\theta_k=\tau_k-\tau_{k-1}$ между моментами импульсов $\tau_k$ являются случайными величинами и размеры импульсного воздействия зависят от случайных параметров $v_k,$ $k=1,2,\ldots.$ На процесс сбора можно влиять таким образом, чтобы остановить заготовку в том случае, когда ее доля окажется достаточно большой, чтобы сохранить некоторую часть ресурса для увеличения размера следующего сбора. Построено управление $\bar u=(u_1,\dots,u_k,\dots),$ ограничивающее долю добываемого ресурса в каждый момент времени $\tau_k$ таким образом, чтобы количество оставшегося ресурса, начиная с некоторого момента $\tau_{k_0},$ было не меньше заданного значения $x>0.$ Получены оценки средней временной выгоды от извлечения ресурса и приведены условия, при которых она имеет положительный предел (с вероятностью единица). Показано, что при недостаточном ограничении на извлечение ресурса значение средней временной выгоды может равняться нулю для всех или для почти всех значений случайных параметров. Таким образом, мы описываем способ добычи ресурса для режима сбора в долгосрочной перспективе, при котором постоянно сохраняется некоторая часть популяции, необходимая для ее дальнейшего восстановления, и с вероятностью единица существует предел средней временной выгоды.
-
Получены условия непрерывной зависимости решений дифференциальных уравнений с запаздыванием от момента и величины импульсного воздействия. Исследование основано на общих утверждениях о разрешимости уравнений с вольтерровыми операторами и непрерывной зависимости их решений от параметров.
-
Работа посвящена формализации и описанию решений нелинейной системы функционально-дифференциальных уравнений, возмущенных импульсным воздействием. Также исследован вопрос о непрерывной зависимости решения от начальной функции.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.