Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'интеграл Римана-Стилтьеса':
Найдено статей: 7
  1. Исследуются свойства правильных функций, а также ограниченных функций, имеющих не более чем счетное множество точек разрыва (названных $\sigma$-непрерывными). Доказана теорема об интегрируемости по Риману-Стилтьесу $\sigma$-непрерывных функций по непрерывным функциям ограниченной вариации, а также предельная теорема Хелли для таких интегрируемых и интегрирующих функций. Процесс интегрирования по Риману-Стилтьесу расширяется на случай интегрирования $\sigma$-непрерывных функций по произвольным функциям ограниченной вариации: вводится $(*)$-интеграл как сумма классического интеграла Римана-Стилтьеса по непрерывной части функции ограниченной вариации и суммы произведений значений интегрируемой функции на скачки интегрирующей. Таким образом, $(*)$-интеграл позволяет интегрировать разрывные функции по разрывным. Все свойства $(*)$-интеграла выводятся непосредственно из этого определения. Так, для $(*)$-интеграла доказывается формула интегрирования по частям, теорема о перемене порядка интегрирования, а также все необходимые для дальнейшегоприменения предельные теоремы, в том числе предельная теорема типа теоремы Хелли.

  2. В пространстве прерывистых функций исследовано параметрическое семейство подпространств специального вида и подпространство, представляющее их пересечение. Оно содержит в себе пространство функций ограниченной вариации. Исследована решетка подпространств, зависящая от параметра. Исследованы вопросы существования интеграла РиманаСтилтьеса на элементах подпространств. Доказана полнота подпространств (в каждом подпространстве используется собственная норма). Исследованы соотношения между нормами.

  3. В предыдущей работе авторов введено понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Пространство ${\mathrm G}(X)$ таких функций банахово по $\sup$-норме и является замыканием пространства ступенчатых функций. В настоящей работе определено и исследовано пространство ${\mathrm G}^F(X)$, отличающееся от ${\mathrm G}(X)$ тем, что здесь в определении правильных функций многих переменных вместо специальных разбиений фигурируют $F$-разбиения: их элементами являются измеримые по обобщенной мере Жордана (по мере $m_{_{\!F}}$) непустые открытые множества. (Через $F$ обозначена функция, порождающая меру $m_{_{\!F}}$.) Во второй части работы определено понятие $F$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по мере $m_{_{\!F}}$ замыкание непустого открытого ограниченного множества $X_0\subseteq{\mathbb R}^n$, а функция $f\colon X\to {\mathbb R}$ интегрируема в смысле РиманаСтилтьеса относительно меры $m_{_{\!F}}$, то она $F$-интегрируема. При этом значения кратных интегралов совпадают. Все функции из пространства ${\mathrm G}^F(X)$ являются $F$-интегрируемыми. Доказаны основные свойства $F$-интеграла РиманаСтилтьеса.

  4. В предыдущей работе автора для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определено понятие квазиинтеграла. Если существует интеграл РиманаСтилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом.

    В настоящей работе доказана теорема существования и единственности решения квазиинтегрального уравнения с постоянной матрицей. Ядро системы - скалярная кусочно-непрерывная функция ограниченной вариации, компоненты уравнения - прерывистые функции, спектральный параметр - регулярное число. При определенных условиях квазиинтегральное уравнение можно интерпретировать как импульсную систему. Получено явное представление для решения однородного квазиинтегрального уравнения. Для абсолютно регулярного спектрального параметра определен аналог матрицы Коши, исследованы его свойства и получено явное представление для решения неоднородного квазиинтегрального уравнения в форме Коши. Аналогичные результаты получены для сопряженного и союзных уравнений.

    Обсуждается возможность восстановления аппроксимирующего дефекта квазиинтеграла, - дефекта, порождающего аппроксимируемые решения импульсной системы.

  5. Рассмотрены новые свойства криволинейного интеграла Римана-Стилтьеса. Доказано, что криволинейный интеграл Римана-Стилтьеса не зависит от пути интегрирования, если интегрируемая и интегрирующая функции зависят только от одной переменной. Найдено новое необходимое условие функциональной зависимости функций двух переменных. Предлагается новый подход к определению двойного интеграла Римана-Стилтьеса, который содержит не одну, а две интегрирующие функции. Рассмотрены общие свойства двойного интеграла Римана-Стилтьеса. Приведены способы вычисления двойного интеграла для случая гладких или кусочно-гладких интегрирующих функций. Получена одна формула для преобразования двойного интеграла Римана-Стилтьеса в повторный интеграл.

  6. Для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определяется понятие квазиинтеграла. Если существует интеграл РиманаСтилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом. Приведены необходимые и достаточные условия существования квазиинтегралов, доказаны их основные свойства, в частности, аналог формулы интегрирования по частям.

  7. Вводится понятие криволинейного интеграла Римана-Стилтьеса, доказываются некоторые его свойства. Показано, что такой интеграл определяет знакопеременную меру на плоскости, указаны условия, при которых эта мера будет счётно-аддитивной.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref