Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'кратный резонанс':
Найдено статей: 4
  1. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Пусть значения параметров задачи таковы, что в системе реализуется одновременно двойной комбинационный резонанс третьего порядка и резонанс четвертого порядка. Решается вопрос о существовании и устойчивости резонансных периодических решений системы. Исследование проводится на примере задачи о движении динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите. В качестве невозмущенных рассматриваются периодические движения спутника, рождающиеся из его стационарных вращений на круговой орбите (гиперболоидальной и конической прецессий), для резонансных значений параметров. Проведена нормализация гамильтонианов возмущенного движения, определены положения равновесия приближенных (модельных) систем, методом Пуанкаре построены соответствующие резонансные периодические движения спутника в окрестности указанных невозмущенных движений, дана их геометрическая интерпретация. Выявлены неустойчивые периодические движения, а также движения, являющиеся устойчивыми для большинства (в смысле меры Лебега) начальных условий и формально устойчивыми.

  2. Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.

  3. Рассматриваются движения близкой к автономной периодической по времени гамильтоновой системе с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется двойной, основной и комбинационный, резонанс третьего порядка, при этом комбинационный резонанс может быть сильным или слабым. В обоих случаях в полной нелинейной системе указанное равновесие неустойчиво. Проведена нормализация гамильтонианов возмущенного движения в членах до четвертого порядка включительно относительно возмущений с учетом имеющихся резонансов. Решен вопрос о существовании и числе положений равновесия соответствующих приближенных (модельных) систем, найдены достаточные и необходимые условия их устойчивости. Методом малого параметра Пуанкаре построены периодические движения исходных полных систем, рождающиеся из положений равновесия модельных систем. Решен вопрос об их устойчивости в линейном приближении. В частности, получены условия существования (в малой окрестности неустойчивого тривиального равновесия) устойчивых (в линейном приближении) периодических движений.

  4. Рассматриваются движения неавтономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется кратный (двойной или тройной) резонанс четвертого порядка. Дан перечень всех возможных наборов характеристических показателей, соответствующих указанным резонансным случаям. Получены пять качественно различных приближенных (модельных) гамильтонианов, отвечающих данным наборам. Для всех рассматриваемых случаев кратных резонансов получены достаточные условия формальной устойчивости тривиального равновесия полной системы, записанные в виде ограничений на коэффициенты форм четвертой степени в нормализованных гамильтонианах возмущенного движения, дана графическая интерпретация этих условий. Показано, что полученные области формальной устойчивости содержатся внутри областей устойчивости каждого имеющегося сильного резонанса, рассматриваемого по отдельности, а резонансные коэффициенты, отвечающие слабым резонансам, должны принимать значения из ограниченного диапазона. Рассмотрены некоторые вопросы о неустойчивости тривиального равновесия системы в случаях кратных резонансов четвертого порядка. Найденные условия формальной устойчивости проверены в точках кратных резонансов четвертого порядка в задаче об устойчивости цилиндрической прецессии динамически симметричного спутника-пластинки в центральном ньютоновском гравитационном поле на эллиптической орбите произвольного эксцентриситета.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref