Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Независимость оценок погрешности интерполяции многочленами степени $2k+1$ от углов треугольника, с. 160-168Рассматривается биркгофова интерполяция функции двух переменных многочленами степени $2k+1$ по совокупности двух переменных на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности аппроксимации для производных функции в предложенных конечных элементах зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок погрешности аппроксимации функции и ее частных производных. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу. В данной работе для рассматриваемых интерполяционных условий предлагается набор конкретных функций, позволяющих получить соответствующие оценки погрешности для определенных частных производных.
-
Рассматривается задача построения вершинного описания выпуклого полиэдра, заданного как множество решений некоторой системы линейных неравенств, коэффициенты которой являются алгебраическими числами. Обратная задача эквивалентна (двойственна) исходной. Предлагаются программные реализации нескольких модификаций хорошо известного метода двойного описания (метода Моцкина-Бургера), решающего поставленную задачу. Рассматривается два случая: 1) элементы системы неравенств - произвольные алгебраические числа, при этом каждое такое число задается минимальным многочленом и локализующим интервалом; 2) элементы системы неравенств принадлежат заданному конечному расширению ${\mathbb Q} (\alpha)$ поля ${\mathbb Q}$, при этом для $\alpha$ задаются минимальный многочлен и локализующий интервал, а все элементы исходной системы, конечные и промежуточные результаты представлены как многочлены от $\alpha$. Как и ожидалось, программная реализация для второго варианта значительно превосходит реализацию для первого варианта по производительности. Для большего ускорения во втором случае предлагается использовать булевы матрицы вместо матриц невязок. Результаты вычислительного эксперимента показывают, что программные реализации вполне пригодны для решения задач умеренных размеров.
-
В статье рассматривается экстремальная задача маршрутизации с ограничениями. В общей формулировке предполагается, что объектами посещения являются любые непустые конечные множества — мегаполисы. Основной прикладной задачей, рассматриваемой в данном исследовании, является задача оптимизации траектории движения инструмента для станков листовой резки с ЧПУ, известная как проблема пути резания. Эта проблема возникает на этапе разработки управляющих программ для станков с ЧПУ. Возможны и другие приложения. В частности, результаты исследования могут быть использованы в задаче минимизация дозы облучения при демонтаже системы радиационно-опасных элементов после аварий на АЭС и в транспортных проблемах. В качестве ограничений исследуются ограничения предшествования. Они могут быть использованы для уменьшения вычислительной сложности. В качестве основного метода исследования использовалось широко понимаемое динамическое программирование. Предлагаемая реализация метода учитывает ограничения предшествования и зависимость целевых функций от списка задач. Последняя относится к классу очень сложных состояний, которые определяют допустимость маршрута на каждом шаге маршрутизации, в зависимости от уже выполненных или, наоборот, еще не завершенных задач. Применительно к задаче резки зависимость целевой функции от списка задач позволяет уменьшать термические деформации материала при резке. В работе математическая формализация экстремальной задачи маршрутизации с дополнительными ограничениями, описание метода и полученный с его помощью точный алгоритм. Оптимизации подлежат порядок выполнения задач, конкретная траектория процесса, и его начальная точка.
-
Рассматривается регуляризация принципа Лагранжа (ПЛ) в выпуклой задаче условной оптимизации с операторным ограничением-равенством в гильбертовом пространстве и конечным числом функциональных ограничений-неравенств. Целевой функционал задачи не является, вообще говоря, сильно выпуклым, а на множество ее допустимых элементов, которое также принадлежит гильбертову пространству, не накладывается условие ограниченности. Получение регуляризованного ПЛ основано на методе двойственной регуляризации и предполагает использование двух параметров регуляризации и двух соответствующих условий согласования одновременно. Один из регуляризирующих параметров «отвечает» за регуляризацию двойственной задачи, другой же содержится в сильно выпуклом регуляризирующем добавке к целевому функционалу исходной задачи. Основное предназначение регуляризованного ПЛ — устойчивое генерирование обобщенных минимизирующих последовательностей, аппроксимирующих точное решение задачи по функции и по ограничениям, для целей ее непосредственного практического устойчивого решения.
-
Независимость оценок погрешности интерполяции многочленами четвертой степени от углов треугольника, с. 64-74Рассматриваются два способа биркгофовой интерполяции функции двух переменных многочленами четвертой степени на треугольнике для метода конечных элементов. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок.
-
Независимость оценок погрешности интерполяции многочленами пятой степени от углов треугольника, с. 53-64Рассматриваются несколько способов биркгофовой интерполяции функции двух переменных многочленами пятой степени на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу.
-
Рассматриваются два способа биркгофовой интерполяции функции двух переменных многочленами второй степени на треугольнике для метода конечных элементов. Оценки погрешности для одного из предложенных параболических элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок.
-
На закруглениях речного русла формируются вторичные поперечные течения. В зависимости от геометрии русла вторичных течений в створе может быть несколько, и они могут иметь различный масштаб. Даже малое вторичное поперечное течение влияет на параметры гидродинамического потока и это влияние необходимо учитывать при моделировании русловых процессов и исследовании береговых деформаций русла. Трехмерное моделирование таких разномасштабных процессов требует больших вычислительных затрат и на текущий момент возможно только для небольших модельных каналов. Поэтому для исследования береговых процессов в данной работе предложена модель пониженной размерности. Выполненная редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости–вихрь–функция тока. В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данного поля скорости должно быть определено из решения вспомогательных задач или получено из данных натурных или экспериментальных измерений. Для численного решения сформулированной задачи используется метод конечных элементов в формулировке Петрова–Галеркина. В работе получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений с известными экспериментальными данными. Погрешности численных результатов авторы связывают с необходимостью более точного определения радиальной компоненты поля скорости в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и более точного определения граничных условий на свободной границе створа.
-
Рассматривается биркгофова интерполяция функции двух переменных многочленами шестой степени на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу.
-
Предложен новый итерационный метод решения статических контактных задач двух деформируемых тел, основанный на поочередном решении задачи одностороннего контакта для первого тела и задачи линейной теории упругости с естественными граничными условиями для второго тела. Выполнение условий закона трения Кулона достигнуто за счет коррекции касательных узловых сил в зоне скольжения и задания кинематических граничных условий в зоне сцепления на контактной границе первого тела. Постепенное выравнивание контактных нагрузок на взаимодействующих поверхностях осуществляется в процессе решения задачи линейной теории упругости для второго тела. Преимущества метода продемонстрированы на решении ряда модельных примеров, включая односторонний контакт линейно-упругой пластины с твердым основанием, двухсторонний контакт вдавливания деформируемого блока в основание, задачу Герца о контакте двух деформируемых цилиндров и др. Разработанный метод применим для решения контактных задач с плоскими и криволинейными границами взаимодействия.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.