Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'механические системы':
Найдено статей: 15
  1. Рассматривается стационарная управляемая система в конечномерном эвклидовом пространстве и на конечном промежутке времени. Изучается задача о сближении управляемой системы с компактным целевым множеством на заданном промежутке времени. Один из подходов к решению рассматриваемой задачи о сближении основан на выделении в пространстве позиций множества разрешимости, т.е. множества всех позиций системы, из которых, как из начальных, разрешима задача о сближении. Конструирование множества разрешимости - самостоятельная сложная и трудоемкая задача, которую удается точно решить лишь в редких случаях. В настоящей работе рассматриваются вопросы приближенного конструирования множества разрешимости в задаче о сближении нелинейной стационарной управляемой системы. Эта задача, как известно, тесно сопряжена с задачей конструирования интегральных воронок и трубок траекторий управляемых систем. Интегральные воронки управляемых систем можно приближенно конструировать по (временным) шагам как наборы соответствующих множеств достижимости, поэтому одним из основных элементов разрешающей конструкции в настоящей работе являются множества достижимости. В работе предлагается схема приближенного вычисления множества разрешимости задачи о сближении управляемой стационарной системы на конечном промежутке времени. В основе этой схемы лежит сведение к приближенному вычислению множеств разрешимости конечного числа более простых задач - задач о сближении с целевым множеством в фиксированные моменты времени из заданного временного промежутка. При этом моменты времени должны выбираться достаточно плотно в упомянутом промежутке времени. В работе проведено математическое моделирование задачи о сближении механической системы «Трансляционный осциллятор с ротационным актуатором». Представлено графическое сопровождение решения задачи.

  2. Рассматривается нелинейная механическая система, динамика которой описывается векторным дифференциальным уравнением типа Льенара. Предполагается, что коэффициенты данного уравнения могут переключаться с одного набора постоянных значений на другой, причем общее количество этих наборов, вообще говоря, бесконечное. Таким образом, для задания коэффициентов уравнения используются кусочно-постоянные функции с бесконечным числом точек разрыва на всей временной оси. Предлагается способ построения разрывной функции Ляпунова, с помощью которой исследуются достаточные условия асимптотической устойчивости нулевого положения равновесия изучаемого уравнения. Полученные результаты обобщаются на случай нестационарного уравнения Льенара с разрывными коэффициентами более общего вида. В качестве вспомогательного результата работы разрабатываются методы анализа вопроса знакоопределенности и подходы к получению оценок для алгебраических выражений, представляющих собой сумму слагаемых степенного вида с нестационарными коэффициентами. Ключевой особенностью исследования является отсутствие предположений об ограниченности указанных нестационарных коэффициентов или об их отделенности от нуля. Приводятся некоторые примеры, иллюстрирующие установленные результаты.

  3. Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    Целью управления является  движение системы по  множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием  позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности  множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.

    Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения

    A(t,x)F(t,x)+u,

    где u - позиционное импульсное управление, и скользящими режимами системы

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы  более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.

  4. Рассматривается стационарная управляемая система в евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из центральных в теории управления задач  задача о сближении управляемой системы с множеством в фазовом пространстве системы в фиксированный (конечный) момент времени. Эта задача тесно связана с многими ключевыми задачами теории управления, например, с задачей об оптимальном быстродействии. В связи с этим представляется важным иметь эффективные алгоритмы построения решений этой задачи. Из-за сложности задачи невозможно аналитическое описание решений даже в относительно простых случаях. Построение приближенных решений задачи связано с конструированием интегральной воронки управляемой системы, но обращенной во времени. В работе приводится один алгоритм приближенного построения интегральной воронки, представляющей собой конечную аппроксимацию множества разрешимости задачи о сближении. В работе также описана процедура приближенного вычисления разрешающего управления, которая включает в себя запоминание локальных управлений. Приводится иллюстрирующий пример механической управляемой системы.

  5. Неголономные механические системы возникают во многих задачах, имеющих практическое значение. Известной моделью в неголономной механике являются сани Чаплыгина. Сани Чаплыгина представляют собой твердое тело, опирающееся на поверхность острым невесомым колесом. Острый край колеса препятствует скольжению в направлении, перпендикулярном его плоскости. В данной работе рассмотрены сани Чаплыгина с изменяющимся со временем распределением масс, которое возникает за счет движения точки в поперечном относительно плоскости лезвия направлении. Получены уравнения движения, среди которых отделяется замкнутая система уравнений с периодическими по времени коэффициентами, описывающая эволюцию поступательной и угловой скорости саней. Показано, что если проекция центра масс всей системы на ось вдоль лезвия равна нулю, тогда поступательная скорость саней возрастает. При этом траектория точки контакта, как правило, является неограниченной.

  6. В статье рассматривается твердотельный волновой гироскоп - прибор, измеряющий проекцию угловой скорости на ось прибора. Основным элементом прибора является резонатор, в котором реализуется эффект инертности стоячих волн. Из-за различных дефектов материалов и технологий изготовления появляется взаимодействие основных рабочих колебаний и побочных деформаций в месте крепления, из-за чего появляются конструкционное демпфирование и, как следствие, дрейф стоячей волны. Предлагается исследовать вопросы конструкционного демпфирования в твердотельном волновом гироскопе и появления дрейфа волны с помощью модели в виде механической системы. В механической системе центральная масса моделирует крепежную ножку резонатора. Выводится математическая модель с помощью подхода Лагранжа. Механическая система описывается в декартовых координатах в общем виде для $N+1$ массы. Выбирается более удобная неинерциальная система координат, вращающаяся с некоторой угловой скоростью. Приводятся выкладки для получения математической модели в виде системы дифференциальных уравнений. Анализируется полученная математическая модель. Описываются дальнейшие пути исследования конструкционного демпфирования и дрейфа.

  7. Исследуется система $N$ ротаторов с наложенной связью, заданной условием обращения в ноль суммы косинусов углов поворота. Сформулированы уравнения динамики и приведены результаты численного моделирования для случаев $N=3$, $4$ и $5$, которые отвечают геодезическим потокам на двумерном, трехмерном и четырехмерном многообразии в компактной области (в силу периодичности конфигурационного пространства по угловым переменным). Система из трех ротаторов демонстрирует хаос, характеризуемый наличием одного положительного показателя Ляпунова, а для систем из четырех и пяти элементов имеется, соответственно, два и три положительных показателя (гиперхаос). Реализован алгоритм, позволяющий вычислять секционную кривизну многообразия в ходе численного моделирования динамики в точках траектории. В случае $N=3$ кривизна двумерного многообразия отрицательна (за исключением конечного числа точек, где она нулевая), и реализуется геодезический поток Аносова. Для $N=4$ и $5$ расчеты показывают, что условие отрицательной секционной кривизны не выполнено. Также изложена методика и представлены результаты проверки гиперболичности на основе численного анализа углов между подпространствами векторов малых возмущений, причем в случае $N=3$ гиперболичность подтверждается, а для $N=4$ и $5$ нет.

  8. Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.

  9. Рассматривается задача моделирования твердотельного волнового гироскопа. Модель строится в виде механической системы, состоящей из шестнадцати масс. Выводится уравнение динамики данной системы. Полученная модель сравнивается с другими существующими моделями ТВГ.

  10. В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref