Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Доказана теорема, вводящая эквивалентные определения для некоторых пределов сходящихся последовательностей в расширении Белла счетного дискретного пространства.
-
В данной работе рассматривается булева алгебра того же типа, что и алгебра, построенная Беллом, и пространство Стоуна этой булевой алгебры. Данное пространство является компактификацией счетного дискретного пространства N. Доказано существование изолированных точек в наросте данной компактификации, которые являются пределами некоторых сходящихся последовательностей. Также доказано, что любое открыто-замкнутое подмножество нашего пространства, которое гомеоморфно βω, является замыканием объединения конечного числа антицепей из N. В конце приведены два примера: замкнутое подмножество нароста без изолированных точек, которое не гомеоморфно βω\ω; подмножество нароста, которое гомеоморфно βω\ω, но не является замкнутым.
-
Решаются вопросы, связанные с замыканием счётных подмножеств пространства Стоуна одной булевой алгебры, являющегося компактификацией счётного дискретного пространства. Показано существование сходящихся последовательностей в наросте этого расширения.
-
Некоторые представления свободных ультрафильтров, с. 345-365Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.
-
Рассматривается абстрактная задача о достижимости при ограничениях асимптотического характера, решение в которой отождествляется с множеством притяжения в классе ультрафильтров пространства обычных решений. Исследуется нарост упомянутого множества по отношению к замыканию множества результатов, доставляемых точными решениями (данное понятие на идейном уровне соответствует схеме Дж. Варги, хотя и применяется в случае ограничений более общего характера). Для представления упомянутого (основного) множества притяжения привлекается соответствующий аналог последнего, реализуемый в пространстве обобщенных элементов. Для получаемого таким образом вспомогательного множества притяжения анализируется нарост и исследуется его связь с наростом основного множества притяжения. Получены условия отождествимости наростов основного и вспомогательного множеств притяжения. Общие положения детализируются для случая, когда обобщенные элементы определяются в виде ультрафильтров широко понимаемых измеримых пространств, где за реализацию наростов оказываются ответственными свободные ультрафильтры. Показано, что при наличии нароста множество допустимых обобщенных элементов не совпадает с замыканием какого-либо множества обычных решений (не допускает стандартной реализации).
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.