Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'нелинейные дифференциальные игры':
Найдено статей: 11
  1. Естественным обобщением дифференциальных игр двух лиц являются конфликтно управляемые процессы с участием группы управляемых объектов (хотя бы с одной из противоборствующих сторон). При этом наибольшую трудность для исследований представляют задачи конфликтного взаимодействия между двумя группами управляемых объектов. Специфика этих задач требует создания новых методов их исследования. В данной работе рассматривается нелинейная задача группового преследования группы жестко скоординированных (то есть использующих одинаковое управление) убегающих при условии, что маневренность убегающих выше. Цель убегающих - обеспечить мягкое убегание всей группы. Под мягким убеганием понимается несовпадение геометрических координат, ускорений и так далее для убегающего и всех преследователей. Для любых начальных позиций участников построено позиционное управление, обеспечивающее мягкое убегание от группы преследователей всех убегающих.

  2. Изучается задача, относящаяся к оценке хаусдорфова отклонения выпуклых многоугольников в $\mathbb{R}^2$ от их геометрической разности с кругами достаточно малого радиуса. Задачи с такой тематикой, в которых рассматриваются не только выпуклые многоугольники, но и выпуклые компакты в евклидовом пространстве $\mathbb{R}^n$, возникают в различных областях математики и, в частности, в теории дифференциальных игр, теории управления, выпуклом анализе. Оценки хаусдорфовых отклонений выпуклых компактов в $\mathbb{R}^n$ от их геометрической разности с замкнутыми шарами в $\mathbb{R}^n$ присутствуют в работах Л.С. Понтрягина, его сотрудников и коллег. Эти оценки весьма существенны при выводе оценки рассогласования альтернированного интеграла Л. С. Понтрягина в линейных дифференциальных играх преследования и альтернированных сумм. Аналогичные оценки оказываются полезными при выводе оценки рассогласования множеств достижимости нелинейных управляемых систем в $\mathbb{R}^n$ и аппроксимирующих их множеств. В работе рассмотрен конкретный выпуклый семиугольник в $\mathbb{R}^2$. Для изучения геометрии этого семиугольника вводится понятие клина в $\mathbb{R}^2$. На базе этого понятия получена верхняя оценка величины хаусдорфова отклонения семиугольника от его геометрической разности с кругом в $\mathbb{R}^2$ достаточно малого радиуса.

  3. Рассматривается задача оптимизации гарантированного результата для управляемой системы, описываемой обыкновенным дифференциальным уравнением, и функционала качества, непрерывно зависящего от траектории движения системы. Значения управления и помехи ограничены в каждый момент компактными множествами. Предполагается, что помеха порождается некоторой неизвестной заранее функцией типа Каратеодори, то есть функцией непрерывной по пространственной переменной при каждом значении временной переменной и измеримой по временной переменной при каждом значении пространственной. Оптимальное управление ищется в классе стратегий управления с полной памятью о движении системы и о реализовавшемся управлении.

    Показано, что для достаточно широкого семейства управляемых систем оптимальный гарантированный результат в классе стратегий с полной памятью совпадает с оптимальным гарантированным результатом в классе квазистратегий. Для этого семейства управляемых систем построена разрешающая стратегия, допускающая численную реализацию. Приводится иллюстрирующий пример для нелинейной управляемой системы.

  4. Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве и на конечном промежутке времени, зависящая от параметра. Изучаются множества достижимости и интегральные воронки дифференциального включения, соответствующего управляемой системе, содержащей параметр. При исследовании многочисленных задач теории управления и дифференциальных игр, конструировании их решений и оценивании погрешностей применяются различные теоретические подходы и ассоциированные с ними вычислительные методы. К упомянутым задачам принадлежат, например, различного рода задачи о сближении, разрешающие конструкции которых могут быть описаны достаточно просто в терминах множеств достижимости и интегральных воронок. В настоящей работе изучается зависимость множеств достижимости и интегральных воронок от параметра: оценивается степень этой зависимости от параметра при определенных условиях на управляемую систему. Степень зависимости интегральных воронок исследована на предмет изменения их объема при варьировании параметра. Для оценки этой зависимости вводятся системы множеств в фазовом пространстве, аппроксимирующие множества достижимости и интегральные воронки на заданном промежутке времени, отвечающие конечному разбиению этого промежутка. При этом сначала оценивается степень зависимости аппроксимирующей системы множеств от параметра, и затем эта оценка используется при оценке зависимости объема интегральной воронки дифференциального включения от параметра. Такой подход естественен и особенно полезен при изучении конкретных прикладных задач управления, при решении которых в конечном итоге приходится иметь дело не с идеальными множествами достижимости и интегральными воронками, а с их аппроксимациями, отвечающими дискретному представлению временного промежутка.

  5. Рассматривается дифференциальная игра двух лиц, описываемая системой вида $\dot x = f(x, u) + g(x, v)$, $x \in \mathbb R^k$, $u \in U$, $v \in V$. Множеством значений управлений преследователя является конечное подмножество фазового пространства. Множеством значений управлений убегающего является компактное подмножество фазового пространства. Целью преследователя является приведение фазовых координат системы в ноль за конечное время. Цель убегающего - помешать этому. Получены достаточные условия на параметры игры для существования окрестности нуля, из которой происходит поимка, то есть приведение системы в ноль. Также доказано, что независимо от выбора действий убегающего время, необходимое преследователю для перевода системы в ноль, стремится к нулю с приближением начального положения к нулю.

  6. В статье исследуется дифференциальная игра простого преследования, когда на управления двух противоборствующих игроков накладываются интегральные ограничения обобщенного типа. Обобщенность предлагаемого ограничения заключается в том, что оно включает в себя ранее известные ограничения, такие как интегральные, геометрические, линейные, экспоненциальные и их смешанности. В общем, оно включает в себя 25 типов задач преследования с такими разнотипными ограничениями. Для решения задачи преследования при таких обобщенных ограничениях предлагается стратегия параллельного преследования (сокращенно $\Pi$-стратегия) и находятся достаточные условия разрешимости этой задачи. В конце статьи предлагаются таблицы, где приводятся каждый частный тип игры, условия ее разрешимости, разрешающая функция (определяющая соответствующую $\Pi$-стратегию) и время поимки.

  7. Рассматривается задача приведения траектории в окрестность нуля в условиях воздействия помехи в терминах дифференциальной игры преследования. Динамика описывается нелинейной автономной системой дифференциальных уравнений второго порядка. Множество значений управлений преследователя является конечным, убегающего (помехи) — компакт. Целью управления, то есть целью преследователя, является приведение, в рамках конечного времени, траектории в любую наперед заданную окрестность нуля вне зависимости от действий помехи. Для построения управления преследователю известны только фазовые координаты и значение скорости в некоторые дискретные моменты времени и неизвестен выбор управления помехи. Получены условия существования множества начальных положений, из каждой точки которого происходит поимка в указанном смысле. Причем это множество содержит некоторую окрестность нуля. Выигрышное управление строится конструктивно и имеет дополнительное свойство, указанное в теореме. Кроме того, получена оценка времени приведения скорости из одной заданной точки в окрестность другой заданной точки в условиях воздействия помехи.

  8. Рассматривается нелинейная однотипная дифференциальная игра с фиксированным моментом окончания. Платой является норма фазового вектора. Вычислена функция цены игры и найдены оптимальные стратегии игроков.

  9. Рассматривается дифференциальная игра двух лиц, описываемая системой вида $\dot x = f(x, u) + g(x, v)$, $x \in \mathbb R^k$, $u \in U$, $v \in V$. Множеством значений управлений преследователя является конечное подмножество фазового пространства. Множеством значений управлений убегающего является компактное подмножество фазового пространства. Целью преследователя является поимка, то есть приведение системы в любую заданную окрестность начала координат. Получены достаточные условия разрешимости задачи преследования в классе кусочно-программных стратегий преследователя. Также доказано, что независимо от действий убегающего время поимки стремится к нулю, если начальное состояние приближается к началу координат.

  10. Исследуются нелинейная дифференциальная игра (ДИ) сближения-уклонения, а также релаксации игровой задачи сближения (имеется в виду ослабление условий окончания игры сближения). Рассматривается вариант метода программных итераций, реализуемый в пространстве функций и доставляющий в пределе функцию цены ДИ на минимакс-максимин для специальных функционалов траектории. Данная предельная функция реализует для каждой позиции игры наименьший размер окрестности целевого множества, для которого при пропорциональном ослаблении фазовых ограничений игрок, заинтересованный в сближении, еще гарантирует его осуществление. Исследуются свойства вышеупомянутых функционалов и предельной функции. В частности, получены достаточные условия реализации значений данной функции при выполнении конечного числа итераций.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref