Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'область достижимости':
Найдено статей: 8
  1. Изучается задача, относящаяся к оценке хаусдорфова отклонения выпуклых многоугольников в $\mathbb{R}^2$ от их геометрической разности с кругами достаточно малого радиуса. Задачи с такой тематикой, в которых рассматриваются не только выпуклые многоугольники, но и выпуклые компакты в евклидовом пространстве $\mathbb{R}^n$, возникают в различных областях математики и, в частности, в теории дифференциальных игр, теории управления, выпуклом анализе. Оценки хаусдорфовых отклонений выпуклых компактов в $\mathbb{R}^n$ от их геометрической разности с замкнутыми шарами в $\mathbb{R}^n$ присутствуют в работах Л.С. Понтрягина, его сотрудников и коллег. Эти оценки весьма существенны при выводе оценки рассогласования альтернированного интеграла Л. С. Понтрягина в линейных дифференциальных играх преследования и альтернированных сумм. Аналогичные оценки оказываются полезными при выводе оценки рассогласования множеств достижимости нелинейных управляемых систем в $\mathbb{R}^n$ и аппроксимирующих их множеств. В работе рассмотрен конкретный выпуклый семиугольник в $\mathbb{R}^2$. Для изучения геометрии этого семиугольника вводится понятие клина в $\mathbb{R}^2$. На базе этого понятия получена верхняя оценка величины хаусдорфова отклонения семиугольника от его геометрической разности с кругом в $\mathbb{R}^2$ достаточно малого радиуса.

  2. Ухоботов В.И., Зайцева О.В.
    Об одной задаче импульсной встречи, с. 42-45

    Рассматривается игровая задача импульсной встречи в заданный момент времени, в случае когда первый игрок выбирает группу импульсных управлений, на выбор каждого из которых в процессе управления можно потратить свое заданное количество ресурсов. На выбор управления второго игрока накладывается геометрическое ограничение. Найдены достаточные условия возможности окончания игры из заданного начального состояния и построены соответствующие импульсные управления.

  3. Рассматривается абстрактная задача о достижимости с ограничениями асимптотического характера. Ограничения такого типа могут возникать при ослаблении стандартных (в теории управления) ограничений, таких как фазовые ограничения, краевые и промежуточные условия, которым должны удовлетворять траектории системы. Однако ограничения асимптотического характера могут возникать и изначально, характеризуя тенденции в части реализации желаемого поведения. Так, например, можно говорить о реализации достаточно мощных импульсов управления исчезающе малой длительности. В этом последнем случае трудно говорить об ослаблении каких-либо стандартных ограничений. Так или иначе, мы сталкиваемся с набором ужесточающихся требований, каждому из которых можно сопоставить некоторый аналог области достижимости в теории управления, а точнее образ подмножества пространства обычных решений (управлений) при действии заданного оператора. В работе исследуются вопросы структуры возникающего (как аналог области достижимости) множества притяжения. Схема исследования базируется на применении специального варианта расширения пространства решений, допускающего естественную аналогию с расширением Волмэна, используемого в общей топологии. В этой ситуации естественно полагать, что пространство обычных решений оснащено некоторой топологией (обычно в этом случае исследуется $T_1$-пространство). В этой связи обсуждаются вопросы, связанные с заменой множеств, формирующих ограничения асимптотического характера, замыканиями и внутренностями, а также (частично) вопросы, связанные с представлением внутренности множества допустимых обобщенных элементов, образующего вспомогательное множество притяжения.

  4. Рассматривается задача управления линейной системой нейтрального типа с импульсными ограничениями. Кроме того, предполагается заданной система промежуточных условий. Исследуется постановка, в которой допускается исчезающе малое ослабление упомянутых ограничений. В этой связи область достижимости (ОД) в фиксированный момент окончания процесса заменяется естественным асимптотическим аналогом — множеством притяжения (МП). Для построения последнего используется конструкция расширения в классе конечно-аддитивных (к.-а.) мер, используемых в качестве обобщенных управлений. Показано, что МП совпадает с ОД системы в классе обобщенных управлений – к.-а. мер. Исследуется структура упомянутого МП.

  5. В задачах управления построение и исследование областей достижимости и их аналогов очень важно. Эта статья адресована задачам о достижимости в топологических пространствах. Используются ограничения асимптотической природы, определяемые в виде непустых семейств множеств. Решение соответствующей задачи о достижимости определяется как множество притяжения. Точки этого множества притяжения (элементы притяжения) реализуются в классе приближенных решений, которые являются несеквенциальными аналогами приближенных решений Варги. Обсуждаются некоторые возможности применяемых компактификаторов. Рассматриваются вопросы реализации множеств притяжения с точностью до заданной окрестности. Исследуются некоторые топологические свойства множеств притяжения. Рассмотрен пример с пустым множеством притяжения.

  6. Рассматривается конструкция расширения абстрактной задачи о достижимости, реализуемая с использованием компакта Стоуна (пространство ультрафильтров алгебры множеств в традиционном оснащении). Исследуются вопросы, связанные с построением множеств притяжения; последние определяют возможности в части достижимости желаемых состояний в топологическом пространстве при использовании асимптотических аналогов обычных решений. Предполагаются заданными ограничения асимптотического характера, которые, в частности, могут возникать при ослаблении стандартных ограничений, используемых в задачах управления (естественным прототипом исследуемой абстрактной задачи может служить задача о построении асимптотического аналога области достижимости управляемой системы при исчезающе малом ослаблении тех или иных ограничений на выбор программного управления). Используя естественную модификацию подхода Дж. Варги, можно ввести наряду с точными так называемые приближенные решения в виде последовательностей обычных решений, соблюдающих с "нарастающей точностью" условия, составляющие в своей совокупности "асимптотические ограничения". В ряде случаев таких (секвенциальных) приближенных решений оказывается недостаточно. Требуются направленности или фильтры. Последние используются в настоящей работе в качестве основного типа (асимптотических по существу) решений при построении множеств притяжения в задачах о достижимости с ограничениями асимптотического характера; более того, в этих построениях удается ограничиться использованием ультрафильтров. Для одного частного случая на этой основе установлена конкретная структура множества притяжения.

  7. Рассматривается линейная игровая задача управления на максимин с ограничениями асимптотического характера (ОАХ), которые естественно возникают в связи с реализацией «узких» управляющих импульсов. В содержательном отношении это соответствует импульсным режимам управления с полным расходованием топлива. Возникающая игровая задача отвечает использованию асимптотических режимов управления обоими игроками, что отражено в концепции расширения, реализуемой в классе конечно-аддитивных мер. Исходная содержательная задача управления для каждого из игроков рассматривается как вариант абстрактной постановки, связанной с достижимостью при ОАХ, для которой построена соответствующая обобщенная задача о достижимости и установлено представление множества притяжения (МП), играющее роль асимптотического аналога области достижимости в классической теории управления. Данная конкретизация реализуется для каждого из игроков, на основе чего получается обобщенный максимин, для которого затем указан вариант асимптотической реализации в классе обычных управлений. Получено «конечномерное» описание МП, позволяющее находить упомянутый максимин с применением численных методов. Рассмотрено решение модельного примера задачи об игровом взаимодействии двух материальных точек, включающее этап компьютерного моделирования.

  8. Рассматриваются вопросы, связанные с достижимостью по скоростной координате для материальной точки при краевом условии на ее положение в последний момент времени. Исследуется свойство, имеющее смысл устойчивости (с точностью до замыкания) при ослаблении краевого условия. Для этого осуществляется сравнение области достижимости по скорости и множества притяжения, реализуемого в схеме с ужесточением ослабленных ограничений. Типичным оказывается совпадение последнего с замыканием упомянутой области достижимости.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref