Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'порог протекания':
Найдено статей: 4
  1. На основе известных свойств функции вероятности протекания простой кубической решётки размера L=2 в приближении линейной связи порога протекания бесконечной решётки xc и среднего значения xcL конечной решётки введена нескейлинговая функция вероятности протекания для решётки размера L>2. Показано, что на пороге протекания нескейлинговые вероятности для всех ПК решёток одинаковы.
    Компьютерные эксперименты на основе метода Монте-Карло согласуются с предлагаемой в работе теорией.

  2. Предложен метод расчета порога протекания xc бесконечной решетки в d-мерном пространстве на основе среднего значения величины xcL решеток малых размеров L. Условие применимости метода ограничило круг рассматриваемых 2d и 3d решеток в задаче узлов до квадратной и алмазной. Величины xcL для этих решеток рассчитывались на основе вектора начального состояния решетки и матрицы смежности графа, соответствующего решетке с долей узлов x=1. Вычислены пороги протекания квадратной решетки xc=0,592744 и решетки алмаза xc=0,430308.

  3. Рассмотрена перколяционная задача узлов. Методом двух решёток получены пороги протекания треугольной решётки xc = 1/2 и квадратной 1,2 решётки  xc = 0,40725616. 

    На основе идеи Ходжа из алгебраической геометрии предложен метод оценки порога протекания xc бесконечной решётки по перколяционным свойствам её элементарной ячейки. Изучена модель элементарной ячейки решётки Бёте, которая в дальнейшем применена для оценки порогов протекания объёмноцентрированной кубической и гранецентрированной кубической решёток в трёхмерном случае и шестиугольной решётки  в плоском случае. В результате оценки получены значения  xc(bcc) = 0,24595716 для ОЦК,  xc = xc(fcc) = 0,19925370 для ГЦК и  xc = 0,69700003 для шестиугольной решёток.

  4. По введенной функции вероятности протекания в модели решетки Бете определен порог протекания простой кубической решетки в задаче узлов: xc(s.c.)=0,3116865.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref