Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'решетка':
Найдено статей: 14
  1. Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.

  2. В пространстве прерывистых функций исследовано параметрическое семейство подпространств специального вида и подпространство, представляющее их пересечение. Оно содержит в себе пространство функций ограниченной вариации. Исследована решетка подпространств, зависящая от параметра. Исследованы вопросы существования интеграла Римана–Стилтьеса на элементах подпространств. Доказана полнота подпространств (в каждом подпространстве используется собственная норма). Исследованы соотношения между нормами.

  3. На основе известных свойств функции вероятности протекания простой кубической решётки размера L=2 в приближении линейной связи порога протекания бесконечной решётки xc и среднего значения xcL конечной решётки введена нескейлинговая функция вероятности протекания для решётки размера L>2. Показано, что на пороге протекания нескейлинговые вероятности для всех ПК решёток одинаковы.
    Компьютерные эксперименты на основе метода Монте-Карло согласуются с предлагаемой в работе теорией.

  4. Предложен метод расчета порога протекания xc бесконечной решетки в d-мерном пространстве на основе среднего значения величины xcL решеток малых размеров L. Условие применимости метода ограничило круг рассматриваемых 2d и 3d решеток в задаче узлов до квадратной и алмазной. Величины xcL для этих решеток рассчитывались на основе вектора начального состояния решетки и матрицы смежности графа, соответствующего решетке с долей узлов x=1. Вычислены пороги протекания квадратной решетки xc=0,592744 и решетки алмаза xc=0,430308.

  5. Рассматривается периодический оператор Шредингера ĤA+V в Rn, n≥3. На векторный потенциал A накладываются ограничения, которые, в частности, выполнены, если потенциал A принадлежит классу Соболева Hqloc(Rn;Rn), 2q>n-1, а также в случае, когда Σ ||AN||Cn<+∞, где AN – коэффициенты Фурье потенциала A. Доказана абсолютная непрерывность спектра периодического оператора Шредингера ĤA+V для скалярных потенциалов V из пространства Морри L2,p(Rn), p∈((n-1)/2,n/2], для которых ||ΧBr(x)V||2,pε0 при всех достаточно малых r>0 и всех xRn, где число ε0=ε0(n,p;A)>0 зависит от векторного потенциала A, Br(x) – замкнутый шар радиуса r>0 с центром в точке xRn, ΧΚ – характеристическая функция множества KRn, ||.||2,p
    норма в пространстве L2,p(Rn). Пусть K – элементарная ячейка решетки периодов потенциалов A и V, K* – элементарная ячейка обратной решетки. Оператор ĤA+V  унитарно эквивалентен прямому интегралу операторов ĤA(k)+V, k∈2πK*, действующих в L2(K). Последние операторы рассматриваются также при комплексных векторах k+ik’∈Cn. При доказательстве абсолютной непрерывности спектра оператора ĤA+V используется метод Томаса и оценки резольвенты операторов ĤA(k+ik’)+V при определенным образом выбираемых комплексных векторах k+ik’∈Cn с достаточно большой мнимой частью k’.

  6. В данной работе изучены сечения производящего ряда для решений линейного многомерного разностного уравнения с постоянными коэффициентами и найдены рекуррентные соотношения, связывающие такие сечения. Как следствие, доказан многомерный аналог теоремы Муавра о рациональности сечений производящего ряда в зависимости от вида начальных данных задачи Коши для многомерного разностного уравнения. Для задач о числе путей на целочисленной решетке показано, что при подходящем выборе шагов сечения их производящего ряда представляют известные последовательности многочленов (Фибоначчи, Пелля и др.).

  7. Рассмотрены трехмерные задачи узлов для простой кубической решетки и твердых сфер, находящихся в хаотическом движении. Установлены дополнительные (к двухпоказательному скейлингу) соотношения между индексами: 2-α-γ=ν (или νd-γ=ν) и β=-2α. Определены численные значения трехмерных критических индексов: α=-2/11, η=0, β=4/11, ν=8/11, γ=16/11 и δ=5.

  8. Рассматривается семейство максимальных сцепленных систем, элементами которых являются множества произвольной решетки с «нулем» и «единицей», а также его подсемейство, составленное из ультрафильтров данной решетки. Исследуются соотношения между естественными топологиями, используемыми для оснащения множества максимальных сцепленных систем и множества ультрафильтров упомянутой решетки множеств. Показано, что последнее множество в естественном (для пространств ультрафильтров) оснащении является подпространством пространства максимальных сцепленных систем в оснащении двумя сравнимыми топологиями, одна из которых подобна используемой при построении расширения Волмэна, а вторая соответствует на идейном уровне схеме построения пространства Стоуна в случае, когда решетка является алгеброй множеств. Свойства получающейся битопологической структуры детализированы для случаев, когда решетка является алгеброй множеств, топологией, семейством замкнутых множеств топологического пространства.

  9. Гусакова О.В., Галенко П.К., Шепелевич В.Г., Александров Д.В.
    Формирование микроструктуры быстрозатвердевших сплавов системы Sn-Bi, с. 388-400

    Приведены результаты исследования структуры быстрозатвердевших сплавов системы Sn-Bi, полученных при скорости охлаждения расплава $10^{5}$ К/с с составами Sn-X мас. % Bi (X = 13, 20, 30, 43). Исследования микроструктуры проводились с помощью растровой электронной микроскопии, зеренная структура анализировалась методом дифракции отраженных электронов. Установлено, что кристаллизация всех исследуемых сплавов протекает по химически безразделительному механизму с образованием пересыщенного твердого раствора висмута в решетке олова с составом соответствующим исходному. Наблюдения за распадом твердого раствора при комнатной температуре показывают, что для сплавов концентрация висмута в которых не превышает предельной растворимости висмута в олове (20 мас. %) распад протекает по смешанному механизму непрерывного и прерывистого распадов. В результате непрерывного распада в объеме зерна олова образуются игольчатые когерентные включения висмута. Скорость прерывистого распада увеличивается с повышением концентрации висмута в расплаве. В доэвтектических сплавах с концентрацией висмута выше предельной растворимости распад протекает по прерывистому механизму. Полный распад происходит в несколько стадий, в результате чего в фольгах формируются участки с микроструктурой различной степени дисперсности.

  10. Исследуются решетки конгруэнций полуколец непрерывных функций на произвольном топологическом пространстве. Получены критерии дистрибутивности решетки конгруэнций полукольца непрерывных неотрицательных функций.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref