Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'порядок сходимости':
Найдено статей: 5
  1. В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.

  2. Рассматривается уравнение в частных производных первого порядка с эффектом наследственности:

    $$ \frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = f ( x, t, u(x,t), u_t(x,\cdot)),$$ $$u_t(x,\cdot) = \{u(x,t+s), -\tau\leqslant s <0\}.$$

    Для такого уравнения, с позиций принципа разделения конечномерной и бесконечномерной составляющих состояния, строятся сеточные методы: аналог семейства схем бегущего счета, аналог схемы Кранка-Николсон, метод аппроксимации на середину квадрата. Для учета эффекта наследственности применяются одномерная и двойная кусочно-линейная интерполяции и экстраполяция продолжением. Доказывается, что рассмотренные методы имеют порядки локальной погрешности: соответственно $O(h+\Delta)$, $O(h+\Delta^2)$ и $O(h^2+\Delta^2)$, где $h$ - шаг дискретизации по пространственной переменной, $\Delta$ - шаг дискретизации по временной переменной. Исследуются свойства двойной кусочно-линейной интерполяции. Используя результаты общей теории разностных схем, установлены условия устойчивости предложенных методов. С помощью вложения в общую схему численных методов для функционально-дифференциальных уравнений получены теоремы о порядках сходимости сконструированных алгоритмов. Приведены тестовые примеры по сравнению погрешностей методов.

  3. Рассмотрено волновое уравнение с двумя пространственными и одной временной независимыми переменными и эффектом наследственности вида $$\frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\\u_t(x,y,\cdot)=\left\{u(x,y,t+\xi),-\tau \leqslant \xi\leqslant 0\right\}. $$На основе идеи разделения текущего состояния и функции-предыстории сконструировано семейство сеточных методов для численного решения этого уравнения. По текущему состоянию строится полный аналог известного для уравнения без запаздывания метода с факторизацией, а влияние предыстории учитывается с помощью интерполяционных конструкций. Исследован порядок локальной погрешности алгоритма. Получена теорема о сходимости и порядке сходимости методов с помощью вложения в общую разностную схему систем с последействием. Приводятся результаты расчетов тестового примера с переменным запаздыванием.

  4. В данной статье для одного уравнения смешанного типа четвертого порядка, вырождающегося внутри и на границе области, в прямоугольной области сформулирована и исследована нелокальная начально-граничная задача. С помощью применения метода разделения переменных получена спектральная задача для обыкновенного дифференциального уравнения. Построена функция Грина последней задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром, откуда следует существование собственных значений и система собственных функций спектральной задачи. Доказана теорема разложения заданной функции в равномерно сходящийся ряд по системе собственных функций. С помощью найденного интегрального уравнения и теоремы Мерсера доказана равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.

  5. Рассматривается аналог метода Стеффенсена для решения нелинейных операторных уравнений. Предложенный метод представляет собой двухшаговый итерационный процесс. Исследуется сходимость рассматриваемого метода, доказывается единственность решения, а также определяется порядок сходимости нового метода. Показывается, что предложенная модификация метода Стеффенсена, не использующая производных оператора, имеет порядок сходимости больше, чем порядок сходимости метода Ньютона, известных обобщений метода хорд или других известных модификаций метода Стеффенсена. Метод прилагается к системам нелинейных уравнений. В качестве примера рассматривается задача о пересечении кривых. Проводятся численные эксперименты на четырех тестовых системах, результаты сравниваются с результатами, полученными методом Ньютона, модифицированным методом Ньютона, а также модификациями метода Вегстейна и метода Эйткена, предложенными автором в предыдущих работах.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref