Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
-
Работа посвящена построению приближенных решений краевых задач в прямоугольнике для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя, выступающих в качестве математических моделей движения влаги и солей в почвах с фрактальной организацией. Построены разностные схемы для дифференциальных задач. Методом энергетических неравенств выведены априорные оценки решений рассматриваемых задач в дифференциальной и разностной трактовках. Из полученных априорных оценок следуют единственность, устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью, равной порядку погрешности аппроксимации. Построен алгоритм численного решения разностных схем, полученных при аппроксимации краевых задач для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя. Проведены численные эксперименты, иллюстрирующие полученные в работе теоретические выкладки.
-
Приближение обыкновенных дробно-дифференциальных уравнений дифференциальными уравнениями с малым параметром, с. 515-531В работе предложен подход к аппроксимации обыкновенных дифференциальных уравнений с производными дробного порядка (так называемых дробно-дифференциальных уравнений) дифференциальными уравнениями с производными целого порядка в предположении, что порядок дробного дифференцирования близок к целому числу. Для дробных производных Римана-Лиувилля и Капуто получены разложения по малому параметру, выделяемому из порядка дробного дифференцирования. При этом первый порядок разложения представляется через бесконечный ряд и зависит от производных всех целых порядков. Полученные разложения позволяют приблизить обыкновенные дифференциальные уравнения с производными дробных порядков этого типа обыкновенными дифференциальными уравнениями с малым параметром. Доказано, что для дробно-дифференциальных уравнений, принадлежащих определенному классу, соответствующие приближенные уравнения будут содержать только производные конечного целого порядка. Приближенные решения таких уравнений могут быть найдены с использованием известных методов возмущений. Предлагаемый подход иллюстрируется рядом примеров.
-
В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ где $D^{(\alpha)}f$ - производная по Капуто порядка $\alpha \in (0, 1)$ функции $f$. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Убегающий использует кусочно-программные стратегии, преследователи - кусочно-программные контрстратегии. Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат, $a$ - вещественное число. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования.
-
О двух задачах преследования группы убегающих в дифференциальных играх с дробными производными, с. 65-79В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей группы убегающих, описываемая системой вида \begin{gather*} D^{(\alpha)}x_i = a_i x_i + u_i, \ u_i \in U_i, \quad D^{(\alpha)}y_j = b_jy_j + v, \ v\in V, \end{gather*} где $D^{(\alpha)}f$ — производная по Капуто порядка $\alpha$ функции $f$. Множества допустимых управлений $U_i, V$ — выпуклые компакты, $a_i, b_j$ — вещественные числа. Терминальные множества — выпуклые компакты. Получены достаточные условия разрешимости задач преследования. При исследовании в качестве базового используется метод разрешающих функций. Показано, что возможна такая конфликтная ситуация с равными возможностями всех участников, при которой один преследователь ловит всех убегающих.
-
Групповое преследование в задаче с дробными производными в классе позиционных стратегий с поводырем, с. 94-106В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)} z_i = a_i z_i + u_i - v,\quad u_i, v \in V,$$ где $D^{(\alpha)}f$ — производная по Капуто порядка $\alpha\in(0,1)$ функции $f$. Множество $V$ допустимых управлений — выпуклый компакт, $a_i$ — неположительные вещественные числа. Целью группы преследователей является поимка убегающего. Терминальные множества — начало координат. Получены достаточные условия поимки одного убегающего в классе квазистратегий. Вводится вспомогательная игра, при помощи которой получены достаточные условия поимки убегающего в классе позиционных стратегий с поводырем.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.